A080648 Sum of prime factors of Fibonacci(n).
0, 0, 2, 3, 5, 2, 13, 10, 19, 16, 89, 5, 233, 42, 68, 57, 1597, 38, 150, 60, 436, 288, 28657, 35, 3006, 754, 181, 326, 514229, 110, 2974, 2264, 19892, 5168, 141979, 148, 2443, 9499, 135956, 2228, 62158, 676, 433494437, 641, 109526, 29257, 2971215073, 1185
Offset: 1
Keywords
Examples
a(8) = 10 because Fibonacci(8) = 21 and the sum of the prime divisors {3, 7} equals 10.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1408 (terms 1..1000 from T. D. Noe, using Blair Kelly's data)
- Blair Kelly, Fibonacci and Lucas Factorizations
Programs
-
Magma
[&+PrimeDivisors(Fibonacci(n)):n in [1..48]]; // Marius A. Burtea, Oct 15 2019
-
Maple
with (numtheory):with(combinat, fibonacci): sopf:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]: add (e[j][1], j=1..nops(e)) end: seq (sopf(n), n=1..100); # Michel Lagneau, Nov 13 2012 A080648 := proc(n) A008472(combinat[fibonacci](n)) ; end proc: # R. J. Mathar, Nov 15 2012 # third Maple program: a:= n-> add(i[1], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]): seq(a(n), n=1..48); # Alois P. Heinz, Sep 03 2019
-
Mathematica
Table[Apply[Plus, Transpose[FactorInteger[Fibonacci[n]]][[1]]], {n, 3, 100}] (* Pe *) Array[Plus@@First/@FactorInteger[Fibonacci[ # ]]&, 40 ] (* Michel Lagneau, Nov 13 2012 *)
-
PARI
a(n) = vecsum(factor(fibonacci(n))[,1]); \\ Michel Marcus, Oct 15 2019