A080856 a(n) = 8*n^2 - 4*n + 1.
1, 5, 25, 61, 113, 181, 265, 365, 481, 613, 761, 925, 1105, 1301, 1513, 1741, 1985, 2245, 2521, 2813, 3121, 3445, 3785, 4141, 4513, 4901, 5305, 5725, 6161, 6613, 7081, 7565, 8065, 8581, 9113, 9661, 10225, 10805, 11401, 12013, 12641, 13285, 13945, 14621
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Milan Janjic, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- Reinhard Zumkeller, Enumerations of Divisors.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A005408, A000124, A016813, A049061, A080853, A086514, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A161710, A161711, A161712, A161713, A161715, A006261.
A060820 is another version (but the present sequence is the main entry).
A row of the array in A386478.
Programs
-
Maple
A080856:=n->8*n^2 - 4*n + 1: seq(A080856(n), n=0..100); # Wesley Ivan Hurt, Jul 16 2017
-
Mathematica
LinearRecurrence[{3, -3, 1}, {1, 5, 25}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
-
PARI
a(n)=8*n^2-4*n+1 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: (1+2*x+13*x^2)/(1-x)^3.
a(n) = A060820(n), n>0. - R. J. Mathar, Sep 18 2008
a(n) = C(n,0) + 4*C(n,1) + 16*C(n,2). - Reinhard Zumkeller, Jun 17 2009
a(n) = 16*n+a(n-1)-12 with n>0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: (8*x^2 + 4*x + 1)*exp(x). - G. C. Greubel, Jun 16 2017
Extensions
Definition replaced with the closed form by Bruno Berselli, Jan 16 2013
Comments