cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A248394 q-Expansion of the modular form of weight 3/2, g*theta(2) in Tunnell's notation (see Comments).

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, -4, 0, -2, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 4, 0, -2
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2014

Keywords

Comments

g = q*Product_{m=1..oo} (1-q^(8*m))*(1-q^(16*m)),
theta(t) = Sum_{n=-oo..oo} q^(t*n^2).
Although the OEIS does not normally include sequences in which every other term is zero, this one is important enough to warrant an exception.

Crossrefs

The nonzero bisection is A034950, which has further information and references.
Used in A248397-A248406.
Cf. A000122 (theta_3(q)), A072068, A072069, A080917, A080918, A248395.

Programs

  • Maple
    # This produces a list of the first 100 terms:
    g:=q*mul((1-q^(8*m))*(1-q^(16*m)),m=1..30);
    g:=series(g,q,100);
    th:=t->series( add(q^(t*n^2),n=-50..50), q, 100);
    series(g*th(2),q,100);
    seriestolist(%);
    # Alternative with https://oeis.org/transforms.txt and the Somos Euler transform in A034950:
    p8 := [2,-3,2,-2,2,-3,2,-3] ;
    L := [seq(op(p8),i=1..10)] ;
    EULER(%) ;
    [1,op(%)] ;
    [0,op(AERATE(%,1))] ; # R. J. Mathar, Nov 11 2014
  • Mathematica
    QP = QPochhammer; s = q*QP[q^8]*QP[q^16]*EllipticTheta[3, 0, q^2] + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)

Formula

From Seiichi Manyama, Sep 30 2018: (Start)
Let q = exp(Pi i t).
theta_3(q) = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + ... .
G.f.: (theta_3(q) - theta_3(q^4))*(theta_3(q^32) - theta_3(q^8)/2)*theta_3(q^2).
a(2*n-1) = A080918(2*n-1) - A080917(2*n-1)/2 = A072069(n) - A072068(n)/2 for n > 0. (End)

A072069 Number of integer solutions to the equation 2x^2+y^2+32z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 6, 4, 0, 0, 4, 4, 0, 0, 2, 8, 0, 0, 12, 8, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 12, 20, 0, 0, 16, 4, 0, 0, 12, 12, 0, 0, 14, 20, 0, 0, 20, 8, 0, 0, 4, 20, 0, 0, 8, 12, 0, 0, 24, 8, 0, 0, 14, 8, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and 2 a(n) = A072068(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 6*x^5 + 4*x^6 + 4*x^9 + 4*x^10 + 2*x^13 + 8*x^14 + ... - _Michael Somos_, Dec 26 2019
G.f. = 2*q + 4*q^3 + 6*q^9 + 4*q^11 + 4*q^17 + 4*q^19 + 2*q^25 + 8*q^27 + 12*q^33
+ ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    maxN=128; soln2=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/32]]; Do[n=2x^2+y^2+32z^2; If[OddQ[n]&&n
    				
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^2 * eta(x^32 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^16 + A)^2 * eta(x^64 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^2 * eta(q^32)^5 / (eta(q)^2 * eta(q^4)^3 * eta(q^16)^2 * eta(q^64)^2) in powers of q. - Michael Somos, Dec 26 2019

A080917 Number of integer solutions to the equation 2*x^2 + y^2 + 8*z^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 4, 10, 4, 12, 8, 0, 8, 0, 6, 16, 6, 12, 8, 0, 4, 0, 8, 10, 12, 16, 0, 0, 8, 0, 12, 16, 8, 24, 10, 0, 12, 0, 8, 32, 8, 12, 24, 0, 8, 0, 8, 18, 14, 24, 8, 0, 16, 0, 16, 16, 4, 36, 0, 0, 16, 0, 6, 32, 16, 12, 16, 0, 8, 0, 12, 16, 20, 28, 24, 0, 8, 0, 24, 34, 8, 36, 16, 0
Offset: 0

Views

Author

Michael Somos, Feb 23 2003

Keywords

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 2*q^4 + 4*q^6 + 4*q^8 + 10*q^9 + 4*q^10 + ...
		

Crossrefs

Cf. A000122 (theta_3(q)), A033717, A072068, A080918.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* Michael Somos, Feb 19 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A)^3 * eta(x^16 + A)^5 / (eta(x + A) * eta(x^8 + A)^2 * eta(x^32 + A))^2, n))};

Formula

Euler transform of period-32 sequence [2, -1, 2, -4, 2, -1, 2, 0, 2, -1, 2, -4, 2, -1, 2, -5, 2, -1, 2, -4, 2, -1, 2, 0, 2, -1, 2, -4, 2, -1, 2, -3, ...].
G.f.: theta_3(q) * theta_3(q^2) * theta_3(q^8).
a(2*n - 1) = A072068(n). a(2*n) = A033717(n).

A080963 Expansion of theta_3(q)*theta_3(q^2)*theta_4(q^8) in powers of q.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 0, 2, -4, -4, 0, 0, -8, 0, -2, -8, 6, -4, -8, 0, 4, 0, 0, -6, -12, 0, 0, 0, -8, 0, -4, 8, 8, -8, 10, 0, 12, 0, 0, 0, -8, 12, 0, 0, -8, 0, 8, 2, 14, 8, -8, 0, 16, 0, 0, 8, -4, 4, 0, 0, -16, 0, 6, 0, 16, -4, 16, 0, 8, 0, 0, 8, -20, -4, 0, 0, -8, 0, -8, -6, 8, 4, -16, 0, 20, 0, 0, -8, -20, -8, 0, 0, -16, 0, -8
Offset: 0

Views

Author

Michael Somos, Feb 28 2003

Keywords

Comments

Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).

Programs

  • Mathematica
    a[n_]:= SeriesCoefficient[EllipticTheta[3,0,q]*EllipticTheta[3,0,q^2]* EllipticTheta[3,0,-q^8], {q,0,n}]; Table[a[n], {n,0,50}] (* or *)
    eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[ (eta[q^2]*eta[q^4])^3/(eta[q]^2*eta[q^16]), {q,0,n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Feb 11 2018 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^4+A))^3/(eta(x+A)^2*eta(x^16+A)), n))}

Formula

a(16*n+5) = a(16*n+7) = a(16*n+8) = a(16*n+12) = a(16*n+13) = a(16*n+15) = 0.
a(n) = 2*A080918(n) - A080917(n).
a(2*n+1) = 2*A034950(n).
Expansion of (eta(q^2)*eta(q^4))^3/(eta(q)^2*eta(q^16)) in powers of q.
Euler transform of period-16 sequence [2,-1,2,-4,2,-1,2,-4,2,-1,2,-4,2,-1,2,-3,...].
Expansion of phi(q)phi(q^2)phi(-q^8) in powers of q where phi() is a Ramanujan theta function.
G.f.: Product_{k>0} (1+x^k)^2*(1-x^(2k))*(1-x^(4k))^2/((1+x^(4k))*(1+x^(8k))). - Michael Somos, Feb 16 2006
Showing 1-4 of 4 results.