cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003273 Congruent numbers: positive integers k for which there exists a right triangle having area k and rational sides.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, 124, 125, 126
Offset: 1

Views

Author

Keywords

Comments

Positive integers k such that x^2 + k*y^2 = z^2 and x^2 - k*y^2 = t^2 have simultaneous integer solutions. In other words, k is the difference of an arithmetic progression of three rational squares: (t/y)^2, (x/y)^2, (z/y)^2. Values of k corresponding to y=1 (i.e., an arithmetic progression of three integer squares) form A256418.
Tunnell shows that if a number is squarefree and congruent, then the ratio of the number of solutions of a pair of equations is 2. If the Birch and Swinnerton-Dyer conjecture is assumed, then determining whether a squarefree number k is congruent requires counting the solutions to a pair of equations. For odd k, see A072068 and A072069; for even k see A072070 and A072071.
If a number k is congruent, there are an infinite number of right triangles having rational sides and area k. All congruent numbers can be obtained by multiplying a primitive congruent number A006991 by a positive square number A000290.
Conjectured asymptotics (based on random matrix theory) on p. 453 of Cohen's book. - Steven Finch, Apr 23 2009

Examples

			24 is congruent because 24 is the area of the right triangle with sides 6,8,10.
5 is congruent because 5 is the area of the right triangle with sides 3/2, 20/3, 41/6 (although not of any right triangle with integer sides -- see A073120). - _Jonathan Sondow_, Oct 04 2013
		

References

  • Alter, Ronald; Curtz, Thaddeus B.; Kubota, K. K. Remarks and results on congruent numbers. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 27-35. Florida Atlantic Univ., Boca Raton, Fla., 1972. MR0349554 (50 #2047)
  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 454. [From Steven Finch, Apr 23 2009]
  • R. Cuculière, "Mille ans de chasse aux nombres congruents", in Pour la Science (French edition of 'Scientific American'), No. 7, 1987, pp. 14-18.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2, pp. 459-472, AMS Chelsea Pub. Providence RI 1999.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses the list of primitive congruent numbers produced by the Mathematica code in A006991: *)
    For[cLst={}; i=1, i<=Length[lst], i++, n=lst[[i]]; j=1; While[n j^2<=maxN, cLst=Union[cLst, {n j^2}]; j++ ]]; cLst

Extensions

Guy gives a table up to 1000.
Edited by T. D. Noe, Jun 14 2002
Comments revised by Max Alekseyev, Nov 15 2008
Comment corrected by Jonathan Sondow, Oct 10 2013

A006991 Primitive congruent numbers.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 101, 102, 103, 109, 110, 111, 118, 119, 127, 133, 134, 137, 138, 141, 142, 143, 145, 149, 151, 154, 157, 158, 159
Offset: 1

Views

Author

Keywords

Comments

Squarefree terms of A003273.
Assuming the Birch and Swinnerton-Dyer conjecture, determining whether a number n is congruent requires counting the solutions to a pair of equations. For odd n, see A072068 and A072069; for even n see A072070 and A072071. The Mathematica program for this sequence uses variables defined in A072068, A072069, A072070, A072071. - T. D. Noe, Jun 13 2002

Examples

			6 is congruent because 6 is the area of the right triangle with sides 3,4,5. It is a primitive congruent number because it is squarefree.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 155.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses functions from A072068. *)
    For[lst={}; n=1, n<=maxN, n++, If[SquareFreeQ[n], If[(EvenQ[n]&&soln3[[n/2]]==2soln4[[n/2]])|| (OddQ[n]&&soln1[[(n+1)/2]]==2soln2[[(n+1)/2]]), AppendTo[lst, n]]]]; lst
    (* The following self-contained Mathematica code also assumes the truth of the Birch and Swinnerton-Dyer conjecture. *)
    CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[! SquareFreeQ[n], Null[], MemberQ[{5, 6, 7}, Mod[n, 8]], ok = True, OddQ@n&&Length@Solve[x^2+2y^2+8z^2==n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ@n&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@ Solve[x^2 + 4 y^2 + 32 z^2 == n/2, {x, y, z}, Integers], ok=True]; ok)]; Select[Range[200], CongruentQ] (* Frank M Jackson, Jun 06 2016 *)

Extensions

More terms from T. D. Noe, Feb 26 2003

A248394 q-Expansion of the modular form of weight 3/2, g*theta(2) in Tunnell's notation (see Comments).

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0, -2, 0, 0, 0, 0, 0, -4, 0, -2, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 4, 0, -4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 4, 0, -2
Offset: 0

Views

Author

N. J. A. Sloane, Oct 18 2014

Keywords

Comments

g = q*Product_{m=1..oo} (1-q^(8*m))*(1-q^(16*m)),
theta(t) = Sum_{n=-oo..oo} q^(t*n^2).
Although the OEIS does not normally include sequences in which every other term is zero, this one is important enough to warrant an exception.

Crossrefs

The nonzero bisection is A034950, which has further information and references.
Used in A248397-A248406.
Cf. A000122 (theta_3(q)), A072068, A072069, A080917, A080918, A248395.

Programs

  • Maple
    # This produces a list of the first 100 terms:
    g:=q*mul((1-q^(8*m))*(1-q^(16*m)),m=1..30);
    g:=series(g,q,100);
    th:=t->series( add(q^(t*n^2),n=-50..50), q, 100);
    series(g*th(2),q,100);
    seriestolist(%);
    # Alternative with https://oeis.org/transforms.txt and the Somos Euler transform in A034950:
    p8 := [2,-3,2,-2,2,-3,2,-3] ;
    L := [seq(op(p8),i=1..10)] ;
    EULER(%) ;
    [1,op(%)] ;
    [0,op(AERATE(%,1))] ; # R. J. Mathar, Nov 11 2014
  • Mathematica
    QP = QPochhammer; s = q*QP[q^8]*QP[q^16]*EllipticTheta[3, 0, q^2] + O[q]^80; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)

Formula

From Seiichi Manyama, Sep 30 2018: (Start)
Let q = exp(Pi i t).
theta_3(q) = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^16 + ... .
G.f.: (theta_3(q) - theta_3(q^4))*(theta_3(q^32) - theta_3(q^8)/2)*theta_3(q^2).
a(2*n-1) = A080918(2*n-1) - A080917(2*n-1)/2 = A072069(n) - A072068(n)/2 for n > 0. (End)

A072068 Number of integer solutions to the equation 2x^2+y^2+8z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 10, 12, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 16, 24, 0, 0, 32, 12, 0, 0, 18, 24, 0, 0, 16, 36, 0, 0, 32, 12, 0, 0, 16, 28, 0, 0, 34, 36, 0, 0, 48, 24, 0, 0, 16, 36, 0, 0, 32, 36, 0, 0, 32, 24, 0, 0, 26, 24, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and a(n) = 2*A072069(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 10*x^5 + 12*x^6 + 16*x^9 + 12*x^10 + 10*x^13 + 16*x^14 + 16*x^17 + ...
G.f. = 2*q + 4*q^3 + 10*q^9 + 12*q^11 + 16*q^17 + 12*q^19 + 10*q^25 + 16*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    maxN=128; soln1=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/8]]; Do[n=2x^2+y^2+8z^2; If[OddQ[n]&&nA072068 = CoefficientList[s, x] // Rest (* Jean-François Alcover, Feb 16 2015, after Michael Somos *)
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^5 * eta(x^16 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^7 / (eta(q)^2 * eta(q^4)^5 * eta(q^16)^2) in powers of q. - Michael Somos, Feb 19 2015

A072070 Number of integer solutions to the equation 4*x^2 + y^2 + 8*z^2 = n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 6, 6, 0, 0, 8, 12, 0, 0, 12, 8, 0, 0, 8, 8, 0, 0, 8, 14, 0, 0, 16, 4, 0, 0, 6, 16, 0, 0, 12, 20, 0, 0, 24, 8, 0, 0, 8, 20, 0, 0, 24, 18, 0, 0, 24, 12, 0, 0, 0, 16, 0, 0, 16, 20, 0, 0, 12, 8, 0, 0, 16, 16, 0, 0, 30, 32, 0, 0, 24, 16, 0, 0, 24, 18, 0, 0, 16, 24, 0, 0, 24, 16
Offset: 0

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and a(n) = 2 A072071(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(4) = 4 because (1, 0, 0), (-1, 0, 0), (0, 2, 0) and (0, -2, 0) are solutions.
G.f. = 1 + 2*q + 4*q^4 + 4*q^5 + 6*q^8 + 6*q^9 + 8*q^12 + 12*q^13 + 12*q^16 + 8*q^17 + ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    maxN=128; soln3=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/8]]; yMax=Ceiling[Sqrt[maxN/2]]; zMax=Ceiling[Sqrt[maxN/16]]; Do[n=4x^2+y^2+8z^2; If[n>0&&n<=maxN/2, s=8; If[x==0, s=s/2]; If[y==0, s=s/2]; If[z==0, s=s/2]; soln3[[n]]+=s], {x, 0, xMax}, {y, 0, yMax}, {z, 0, zMax}]
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^4] EllipticTheta[ 3, 0, q^8], {q, 0, n}]; (* Michael Somos, Jul 23 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^3 * eta(x^16 + A)^3 * eta(x^32 + A)^-2, n))}; /* Michael Somos, Feb 11 2003 */

Formula

Expansion of phi(q) * phi(q^4) * phi(q^8) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 09 2012
Euler transform of period 32 sequence [2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -5, 2, -3, 2, 1, 2, -3, 2, -2, 2, -3, 2, 1, 2, -3, 2, -3, ...]. - Michael Somos, Feb 11 2003
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A014455(n). - Michael Somos, Jun 08 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(7/2) (t/i)^(3/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A080917. - Michael Somos, Jul 23 2018

A072071 Number of integer solutions to the equation 4x^2+y^2+32z^2=n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 6, 4, 0, 0, 12, 12, 0, 0, 16, 8, 0, 0, 0, 12, 0, 0, 8, 10, 0, 0, 24, 4, 0, 0, 0, 12, 0, 0, 0, 12, 0, 0, 12, 8, 0, 0, 16, 8, 0, 0, 20, 12, 0, 0, 0, 8, 0, 0, 8, 6, 0, 0, 16, 16, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 8
Offset: 0

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and 2 a(n) = A072070(n).

Examples

			a(4) = 4 because (1,0,0), (-1,0,0), (0,2,0) and (0,-2,0) are solutions.
1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    J12[q_] := Sum[q^n^2, {n, -10, 10}]; CoefficientList[Series[J12[q]J12[q^4]J12[q^32], {q, 0, 100}], q]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^5 * eta(x^16 + A)^-2 * eta(x^32 + A)^-2 * eta(x^64 + A)^5 * eta(x^128 + A)^-2, n))}

Formula

Expansion of phi(x) * phi(x^4) * phi(x^32) in powers of x where phi() is a Ramanujan theta function.
a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 08 2012

Extensions

More terms from Vladeta Jovovic, Jun 16 2002

A034950 Expansion of eta(8z)*eta(16z)*theta_3(2z).

Original entry on oeis.org

1, 2, 0, 0, 1, -2, 0, 0, -4, -2, 0, 0, -3, 0, 0, 0, 4, -4, 0, 0, 0, 6, 0, 0, 1, 4, 0, 0, 4, 2, 0, 0, 0, -2, 0, 0, 4, -2, 0, 0, -3, 2, 0, 0, -4, -4, 0, 0, -4, 2, 0, 0, -8, -6, 0, 0, 8, -4, 0, 0, 1, -4, 0, 0, -4, 6, 0, 0, 0, 2, 0, 0, 0, -2, 0, 0, 4, 8, 0, 0, 0, 6, 0, 0, 5, -2, 0, 0, 4, -2, 0, 0, 8, 4, 0, 0, -4, -8, 0, 0, -4, 8, 0, 0, 4
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + x^4 - 2*x^5 - 4*x^8 - 2*x^9 - 3*x^12 + 4*x^16 - 4*x^17 + ...
G.f. = q + 2*q^3 + q^9 - 2*q^11 - 4*q^17 - 2*q^19 - 3*q^25 + 4*q^33 - ...
		

Crossrefs

A bisection of A248394.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x] EllipticTheta[ 2, Pi/4, x] / Sqrt[8 x], {x, 0, n}]; (* Michael Somos, Feb 18 2015 *)
    QP = QPochhammer; s = QP[q^2]^5*(QP[q^8]/(QP[q]^2*QP[q^4])) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^8 + A) / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Feb 16 2006 */

Formula

Euler transform of period 8 sequence [2, -3, 2, -2, 2, -3, 2, -3, ...]. - Michael Somos, Feb 16 2006
Expansion of q^(-1/2) * eta(q^2)^5 * eta(q^8) / (eta(q)^2 * eta(q^4)) in powers of q. - Michael Somos, Feb 16 2006
Expansion of psi(x)^2 * psi(-x^2) = phi(x) * psi(x^2) * psi(-x^2) = phi(x) * psi(x^4) * phi(-x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 18 2015
G.f.: Product_{k>0} (1 + x^k)^2 * (1 - x^(2*k))^3 * (1 + x^(4*k)). - Michael Somos, Feb 16 2006
2 * a(n) = A080963(2*n + 1). a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Feb 18 2015
a(n) = A072069(n+1) - A072068(n+1)/2. - Seichi Manymama, Sep 30 2018

A080918 Number of integer solutions to the equation 2x^2+y^2+32z^2=n.

Original entry on oeis.org

1, 2, 2, 4, 2, 0, 4, 0, 2, 6, 0, 4, 4, 0, 0, 0, 2, 4, 6, 4, 0, 0, 4, 0, 4, 2, 0, 8, 0, 0, 0, 0, 4, 12, 8, 8, 10, 0, 12, 0, 4, 16, 0, 12, 12, 0, 0, 0, 8, 10, 14, 16, 0, 0, 16, 0, 8, 12, 0, 20, 0, 0, 0, 0, 6, 16, 16, 4, 16, 0, 8, 0, 6, 12, 0, 12, 12, 0, 0, 0, 8, 14, 8, 20, 0, 0, 20, 0, 4, 20, 0, 8, 0
Offset: 0

Views

Author

Michael Somos, Feb 23 2003

Keywords

Crossrefs

a(2n-1)=A072069(n).
Cf. A000122 (theta_3(q)), A080917.

Programs

  • PARI
    {a(n)=my(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^3*eta(x^4+A)^3*eta(x^64+A)^5/ (eta(x+A)*eta(x^8+A)*eta(x^32+A)*eta(x^128+A))^2, n))}

Formula

G.f.: theta_3(q) * theta_3(q^2) * theta_3(q^32).
Showing 1-8 of 8 results.