cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003273 Congruent numbers: positive integers k for which there exists a right triangle having area k and rational sides.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 20, 21, 22, 23, 24, 28, 29, 30, 31, 34, 37, 38, 39, 41, 45, 46, 47, 52, 53, 54, 55, 56, 60, 61, 62, 63, 65, 69, 70, 71, 77, 78, 79, 80, 84, 85, 86, 87, 88, 92, 93, 94, 95, 96, 101, 102, 103, 109, 110, 111, 112, 116, 117, 118, 119, 120, 124, 125, 126
Offset: 1

Views

Author

Keywords

Comments

Positive integers k such that x^2 + k*y^2 = z^2 and x^2 - k*y^2 = t^2 have simultaneous integer solutions. In other words, k is the difference of an arithmetic progression of three rational squares: (t/y)^2, (x/y)^2, (z/y)^2. Values of k corresponding to y=1 (i.e., an arithmetic progression of three integer squares) form A256418.
Tunnell shows that if a number is squarefree and congruent, then the ratio of the number of solutions of a pair of equations is 2. If the Birch and Swinnerton-Dyer conjecture is assumed, then determining whether a squarefree number k is congruent requires counting the solutions to a pair of equations. For odd k, see A072068 and A072069; for even k see A072070 and A072071.
If a number k is congruent, there are an infinite number of right triangles having rational sides and area k. All congruent numbers can be obtained by multiplying a primitive congruent number A006991 by a positive square number A000290.
Conjectured asymptotics (based on random matrix theory) on p. 453 of Cohen's book. - Steven Finch, Apr 23 2009

Examples

			24 is congruent because 24 is the area of the right triangle with sides 6,8,10.
5 is congruent because 5 is the area of the right triangle with sides 3/2, 20/3, 41/6 (although not of any right triangle with integer sides -- see A073120). - _Jonathan Sondow_, Oct 04 2013
		

References

  • Alter, Ronald; Curtz, Thaddeus B.; Kubota, K. K. Remarks and results on congruent numbers. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 27-35. Florida Atlantic Univ., Boca Raton, Fla., 1972. MR0349554 (50 #2047)
  • H. Cohen, Number Theory. I, Tools and Diophantine Equations, Springer-Verlag, 2007, p. 454. [From Steven Finch, Apr 23 2009]
  • R. Cuculière, "Mille ans de chasse aux nombres congruents", in Pour la Science (French edition of 'Scientific American'), No. 7, 1987, pp. 14-18.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 2, pp. 459-472, AMS Chelsea Pub. Providence RI 1999.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses the list of primitive congruent numbers produced by the Mathematica code in A006991: *)
    For[cLst={}; i=1, i<=Length[lst], i++, n=lst[[i]]; j=1; While[n j^2<=maxN, cLst=Union[cLst, {n j^2}]; j++ ]]; cLst

Extensions

Guy gives a table up to 1000.
Edited by T. D. Noe, Jun 14 2002
Comments revised by Max Alekseyev, Nov 15 2008
Comment corrected by Jonathan Sondow, Oct 10 2013

A006991 Primitive congruent numbers.

Original entry on oeis.org

5, 6, 7, 13, 14, 15, 21, 22, 23, 29, 30, 31, 34, 37, 38, 39, 41, 46, 47, 53, 55, 61, 62, 65, 69, 70, 71, 77, 78, 79, 85, 86, 87, 93, 94, 95, 101, 102, 103, 109, 110, 111, 118, 119, 127, 133, 134, 137, 138, 141, 142, 143, 145, 149, 151, 154, 157, 158, 159
Offset: 1

Views

Author

Keywords

Comments

Squarefree terms of A003273.
Assuming the Birch and Swinnerton-Dyer conjecture, determining whether a number n is congruent requires counting the solutions to a pair of equations. For odd n, see A072068 and A072069; for even n see A072070 and A072071. The Mathematica program for this sequence uses variables defined in A072068, A072069, A072070, A072071. - T. D. Noe, Jun 13 2002

Examples

			6 is congruent because 6 is the area of the right triangle with sides 3,4,5. It is a primitive congruent number because it is squarefree.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 155.
  • R. K. Guy, Unsolved Problems in Number Theory, D27.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* The following Mathematica code assumes the truth of the Birch and Swinnerton-Dyer conjecture and uses functions from A072068. *)
    For[lst={}; n=1, n<=maxN, n++, If[SquareFreeQ[n], If[(EvenQ[n]&&soln3[[n/2]]==2soln4[[n/2]])|| (OddQ[n]&&soln1[[(n+1)/2]]==2soln2[[(n+1)/2]]), AppendTo[lst, n]]]]; lst
    (* The following self-contained Mathematica code also assumes the truth of the Birch and Swinnerton-Dyer conjecture. *)
    CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[! SquareFreeQ[n], Null[], MemberQ[{5, 6, 7}, Mod[n, 8]], ok = True, OddQ@n&&Length@Solve[x^2+2y^2+8z^2==n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ@n&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@ Solve[x^2 + 4 y^2 + 32 z^2 == n/2, {x, y, z}, Integers], ok=True]; ok)]; Select[Range[200], CongruentQ] (* Frank M Jackson, Jun 06 2016 *)

Extensions

More terms from T. D. Noe, Feb 26 2003

A072068 Number of integer solutions to the equation 2x^2+y^2+8z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 10, 12, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 16, 24, 0, 0, 32, 12, 0, 0, 18, 24, 0, 0, 16, 36, 0, 0, 32, 12, 0, 0, 16, 28, 0, 0, 34, 36, 0, 0, 48, 24, 0, 0, 16, 36, 0, 0, 32, 36, 0, 0, 32, 24, 0, 0, 26, 24, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and a(n) = 2*A072069(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 10*x^5 + 12*x^6 + 16*x^9 + 12*x^10 + 10*x^13 + 16*x^14 + 16*x^17 + ...
G.f. = 2*q + 4*q^3 + 10*q^9 + 12*q^11 + 16*q^17 + 12*q^19 + 10*q^25 + 16*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    maxN=128; soln1=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/8]]; Do[n=2x^2+y^2+8z^2; If[OddQ[n]&&nA072068 = CoefficientList[s, x] // Rest (* Jean-François Alcover, Feb 16 2015, after Michael Somos *)
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^7 / (eta(x + A)^2 * eta(x^4 + A)^5 * eta(x^16 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^4) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^7 / (eta(q)^2 * eta(q^4)^5 * eta(q^16)^2) in powers of q. - Michael Somos, Feb 19 2015

A072069 Number of integer solutions to the equation 2x^2+y^2+32z^2=m for an odd number m=2n-1.

Original entry on oeis.org

2, 4, 0, 0, 6, 4, 0, 0, 4, 4, 0, 0, 2, 8, 0, 0, 12, 8, 0, 0, 16, 12, 0, 0, 10, 16, 0, 0, 12, 20, 0, 0, 16, 4, 0, 0, 12, 12, 0, 0, 14, 20, 0, 0, 20, 8, 0, 0, 4, 20, 0, 0, 8, 12, 0, 0, 24, 8, 0, 0, 14, 8, 0, 0
Offset: 1

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the odd number 2n-1 is a congruent number if it is squarefree and 2 a(n) = A072068(n).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(2) = 4 because (1,1,0), (-1,1,0), (1,-1,0) and (-1,-1,0) are solutions when m=3.
G.f. = 2*x + 4*x^2 + 6*x^5 + 4*x^6 + 4*x^9 + 4*x^10 + 2*x^13 + 8*x^14 + ... - _Michael Somos_, Dec 26 2019
G.f. = 2*q + 4*q^3 + 6*q^9 + 4*q^11 + 4*q^17 + 4*q^19 + 2*q^25 + 8*q^27 + 12*q^33
+ ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    maxN=128; soln2=Table[0, {maxN/2}]; xMax=Ceiling[Sqrt[maxN/2]]; yMax=Ceiling[Sqrt[maxN]]; zMax=Ceiling[Sqrt[maxN/32]]; Do[n=2x^2+y^2+32z^2; If[OddQ[n]&&n
    				
  • PARI
    {a(n) = my(A); n--; if( n<0, 0, A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^2 * eta(x^32 + A)^5 / (eta(x + A)^2 * eta(x^4 + A)^3 * eta(x^16 + A)^2 * eta(x^64 + A)^2), n))}; /* Michael Somos, Dec 26 2019 */

Formula

Expansion of 2 * x * phi(x) * psi(x^4) * phi(x^16) in powers of x where phi(), psi() are Ramanujan theta functions. - Michael Somos, Jun 08 2012
Expansion of 2 * q^(1/2) * eta(q^2)^5 * eta(q^8)^2 * eta(q^32)^5 / (eta(q)^2 * eta(q^4)^3 * eta(q^16)^2 * eta(q^64)^2) in powers of q. - Michael Somos, Dec 26 2019

A072071 Number of integer solutions to the equation 4x^2+y^2+32z^2=n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 6, 4, 0, 0, 12, 12, 0, 0, 16, 8, 0, 0, 0, 12, 0, 0, 8, 10, 0, 0, 24, 4, 0, 0, 0, 12, 0, 0, 0, 12, 0, 0, 12, 8, 0, 0, 16, 8, 0, 0, 20, 12, 0, 0, 0, 8, 0, 0, 8, 6, 0, 0, 16, 16, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 8
Offset: 0

Views

Author

T. D. Noe, Jun 13 2002

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Related to primitive congruent numbers A006991.
Assuming the Birch and Swinnerton-Dyer conjecture, the even number 2n is a congruent number if it is squarefree and 2 a(n) = A072070(n).

Examples

			a(4) = 4 because (1,0,0), (-1,0,0), (0,2,0) and (0,-2,0) are solutions.
1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
		

References

  • J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.

Crossrefs

Programs

  • Mathematica
    J12[q_] := Sum[q^n^2, {n, -10, 10}]; CoefficientList[Series[J12[q]J12[q^4]J12[q^32], {q, 0, 100}], q]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^5 * eta(x^16 + A)^-2 * eta(x^32 + A)^-2 * eta(x^64 + A)^5 * eta(x^128 + A)^-2, n))}

Formula

Expansion of phi(x) * phi(x^4) * phi(x^32) in powers of x where phi() is a Ramanujan theta function.
a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 08 2012

Extensions

More terms from Vladeta Jovovic, Jun 16 2002

A080965 Expansion of eta(q^2)^12/(eta(q)^4eta(q^4)^5) in powers of q.

Original entry on oeis.org

1, 4, 2, -8, -4, 8, -8, -16, 6, 12, 8, -8, -8, 24, 0, -16, 12, 16, 10, -24, -8, 16, -24, -16, 8, 28, 8, -32, -16, 8, 0, -32, 6, 32, 16, -16, -12, 40, -24, -16, 24, 16, 16, -40, -8, 40, 0, -32, 24, 36, 10, -16, -24, 24, -32, -48, 0, 32, 24, -24, -16, 40, 0, -48, 12, 16, 16
Offset: 0

Views

Author

Michael Somos, Feb 28 2003

Keywords

Comments

Euler transform of period 4 sequence [4,-8,4,-3,...].

Crossrefs

a(n)=A080964(4n)=2*A072071(4n)-A072070(4n).
A083703(n)=(-1)^n a(n). a(2n)=0 iff n in A004215 (checked up to n=343).
a(2n)=0 iff A005875(n)=0.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add([-3, 4, -8, 4]
          [1+irem(d, 4)]*d, d=divisors(j)) *a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 05 2015
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, Sum[DivisorSum[j, {-3, 4, -8, 4}[[1 + Mod[#, 4]]]*#&]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 25 2015, after Alois P. Heinz *)
  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n); polcoeff(eta(X)^-4*eta(X^2)^12*eta(X^4)^-5,n))

Formula

G.f.: Product_{n>0} (1-x^(2n))^12/((1-x^n)^4(1-x^(4n))^5).

A080964 Euler transform of period-16 sequence [2,-3,2,1,2,-3,2,-6,2,-3,2,1,2,-3,2,-3,...].

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 2, -2, 0, 0, -8, -4, 0, 0, -4, 0, 0, 0, 8, -8, 0, 0, -8, -2, 0, 0, -16, 4, 0, 0, 6, -8, 0, 0, 12, 4, 0, 0, 8, 8, 0, 0, -8, 4, 0, 0, -8, 2, 0, 0, 24, -4, 0, 0, 0, 8, 0, 0, -16, 4, 0, 0, 12, 8, 0, 0, 16, 0, 0, 0, 10, -8, 0, 0, -24, 0, 0, 0, -8, -6, 0, 0, 16, 8, 0, 0, -24, -8, 0, 0, -16, -8, 0, 0, 8, 0, 0
Offset: 0

Views

Author

Michael Somos, Feb 28 2003

Keywords

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[eta[q^2]^5 *eta[q^8]^7/(eta[q]^2*eta[q^4]^4*eta[q^16]^3), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 70}] (* G. C. Greubel, Jul 02 2018 *)
  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^n); polcoeff(eta(X)^-2*eta(X^2)^5*eta(X^4)^-4*eta(X^8)^7*eta(X^16)^-3,n))

Formula

a(4*n+2) = a(4*n+3) = 0.
a(n) = 2*A072071(n) - A072070(n).
a(4*n) = A080965(n).
a(4*n+1) = 2*A080966(n).
Expansion of eta(q^2)^5*eta(q^8)^7/(eta(q)^2*eta(q^4)^4*eta(q^16)^3) in powers of q. - G. C. Greubel, Jul 02 2018

A080966 Expansion of theta_4(q^2) * theta_2(q)^2/(4*q^(1/2)) in powers of q.

Original entry on oeis.org

1, 2, -1, -2, 0, -4, -1, 2, -4, 2, 4, 2, 1, -2, 4, 2, 4, 0, -4, 0, -3, 4, -4, -4, 0, -2, 0, -6, 0, 2, -1, -4, 4, -4, -4, 8, 4, 6, 0, 2, -8, 0, 7, 2, 4, 2, 4, 0, 0, -6, 4, 0, -4, 0, 0, 0, 1, -6, -4, 4, -8, -2, -4, 4, 0, 2, -4, -6, 0, -2, 4, -8, 1, 2, 0, 0, 4, 4, 4, -2, 4, 6, 0, -2, 0, -4, -8, 10, 8, 8, -1, 4, 4, 2, -4, -4, -8, 6, 4, -6, 8, -6, 4, 4
Offset: 0

Views

Author

Michael Somos, Feb 28 2003

Keywords

Comments

The nonzero quadrisection of A248395.
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			q + 2*q^5 - q^9 - 2*q^13 - 4*q^21 - q^25 + 2*q^29 - 4*q^33 + ...
		

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]^6/(QP[q]^2*QP[q^4]) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 14 2015, adapted from PARI *)
    QP := QPochhammer; a:=CoefficientList[Series[QP[q^2]^6/(QP[q]^2*QP[q^4]), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 01 2018 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^6/eta(x+A)^2/eta(x^4+A), n))}

Formula

G.f.: Product_{k>0} (1+x^k)^2*(1-x^(2k))^3/(1+x^(2k)).
Expansion of f(-q^4)*f(q)^2 in powers of q where f(-q)=f(-q,-q^2) is a Ramanujan theta function.
Expansion of q^(-1/4)*eta(q^2)^6/(eta(q)^2*eta(q^4)) in powers of q.
Euler transform of period-4 sequence [2,-4,2,-3,...].
G.f.: Product_{k>0} (1-x^(2*k))^3*(1+x^k)^2/(1+x^(2*k)).
2*a(n) = A080964(4*n+1) = 2*A072071(4*n+1) - A072070(4*n+1).
Showing 1-8 of 8 results.