A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.
1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 27.
- Jean-Luc Baril, Toufik Mansour, José L. Ramírez, and Mark Shattuck, Catalan words avoiding a pattern of length four, Univ. de Bourgogne (France, 2024). See p. 3.
- Jean-Luc Baril and Helmut Prodinger, Enumeration of partial Lukasiewicz paths, arXiv:2205.01383 [math.CO], 2022.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Wei Chen, Enumeration of Set Partitions Refined by Crossing and Nesting Numbers, MS Thesis, Department of Mathematics. Simon Fraser University, Fall 2014. Table 4.1, line k=2.
- Johann Cigler, Number of bounded Dyck paths with "negative length", MathOverflow question, Sep 26 2020.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- Paul Duncan and Einar Steingrimsson, Pattern avoidance in ascent sequences, arXiv preprint arXiv:1109.3641 [math.CO], 2011.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Stefan Felsner and Daniel Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
- Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
- Matthew Hyatt and Jeffrey Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Aleksandar Ilic and Andreja Ilic, On the number of restricted Dyck paths, Filomat 25:3 (2011), 191-201; DOI: 10.2298/FIL1103191I.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=5, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras I. Foundations, undirected graphs, antiassociative graphs, arXiv:2011.07621 [math.CO], 2020. See also J. of Algebraic Combinatorics (2021) Vol. 53, 613-638.
- Toufik Mansour and Mark Shattuck, Some enumerative results related to ascent sequences, arXiv preprint arXiv:1207.3755 [math.CO], 2012. - From _N. J. A. Sloane_, Dec 22 2012
- Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, arXiv:1008.3359 [math.AG], 2010-2011. - From _N. J. A. Sloane_, Dec 26 2012
- Sophie Morier-Genoud, Valentin Ovsienko, and Serge Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987. - From _N. J. A. Sloane_, Dec 26 2012
- David Nečas and Ivan Ohlídal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Lara Pudwell, Pattern avoidance in trees, slides from a talk, mentions many sequences, 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
Crossrefs
Programs
-
Magma
I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]: seq(a(n), n=0..35); # Alois P. Heinz, Nov 09 2012
-
Mathematica
nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *) LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
-
PARI
a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
{a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
Formula
a(n) = A080934(n,5).
G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan, May 13 2003
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - Herbert Kociemba, Jun 11 2004
a(n) = A096976(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - Richard Choulet, Apr 19 2010
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - Michael Somos, May 04 2012
a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by Richard Choulet becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
Comments