A081018 a(n) = (Lucas(4n+1)-1)/5, or Fibonacci(2n)*Fibonacci(2n+1), or A081017(n)/5.
0, 2, 15, 104, 714, 4895, 33552, 229970, 1576239, 10803704, 74049690, 507544127, 3478759200, 23843770274, 163427632719, 1120149658760, 7677619978602, 52623190191455, 360684711361584, 2472169789339634, 16944503814015855, 116139356908771352, 796030994547383610
Offset: 0
Examples
G.f. = 2*x + 15*x^2 + 104*x^3 + 714*x^4 + 4895*x^5 + 33552*x^6 + ...
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 28.
- Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Pridon Davlianidze, Problem B-1279, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 58, No. 4 (2020), p. 368; An Unusual Generalization, Solution to Problem B-1279 by J. N. Senadheera, ibid., Vol. 59, No. 4 (2021), pp. 370-371.
- Dae S. Hong, When is the Generating Function of the Fibonacci Numbers an Integer?, The College Mathematics Journal, Vol. 46, No. 2 (March 2015), pp. 110-112
- D. A. Lind, The quadratic field Q(sqrt(5)) and a certain diophantine equation, Fibonacci Quart., Vol. 6, No. 3 (1968), pp. 86-93.
- David Singmaster, Repeated binomial coefficients and Fibonacci numbers, Fibonacci Quart., Vol. 13, No. 4 (1973), pp. 295-298.
- Index entries for linear recurrences with constant coefficients, signature (8,-8,1).
Crossrefs
Programs
-
GAP
List([0..30], n-> (Lucas(1,-1, 4*n+1)[2] -1)/5); # G. C. Greubel, Jul 14 2019
-
Magma
[(Lucas(4*n+1)-1)/5: n in [0..30]]; // Vincenzo Librandi, Aug 24 2015
-
Maple
luc := proc(n) option remember: if n=0 then RETURN(2) fi: if n=1 then RETURN(1) fi: luc(n-1)+luc(n-2): end: for n from 0 to 25 do printf(`%d,`,(luc(4*n+1)-1)/5) od: # James Sellers, Mar 03 2003
-
Mathematica
(LucasL[4*Range[0,30]+1]-1)/5 (* or *) LinearRecurrence[{8,-8,1}, {0,2,15}, 30] (* G. C. Greubel, Aug 24 2015, modified Jul 14 2019 *)
-
PARI
concat(0, Vec(x*(2-x)/((1-x)*(1-7*x+x^2)) + O(x^30))) \\ Colin Barker, Dec 20 2014
-
Sage
[(lucas_number2(4*n+1,1,-1) -1)/5 for n in (0..30)] # G. C. Greubel, Jul 14 2019
Formula
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
a(n) = Fibonacci(3) + Fibonacci(7) + Fibonacci(11) + ... + Fibonacci(4n+3).
G.f.: x*(2-x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Mar 30 2012
E.g.f.: (1/5)^(3/2)*((1+phi^2)*exp(phi^4*x) - (1 + (1/phi^2))*exp(x/phi^4) - sqrt(5)*exp(x)), where 2*phi = 1 + sqrt(5). - G. C. Greubel, Aug 24 2015
From - Michael Somos, Aug 27 2015: (Start)
a(n) = -A081016(-1-n) for all n in Z.
0 = a(n) - 7*a(n+1) + a(n+2) - 1 for all n in Z.
0 = a(n)*a(n+2) - a(n+1)^2 + a(n+1) + 2 for all n in Z.
0 = a(n)*(a(n) -7*a(n+1) -1) + a(n+1)*(a(n+1) - 1) - 2 for all n in Z. (End)
a(n) = (k(n) + sqrt(k(n)*(4 + 5*k(n))))/2, where k(n) = A049684(n). - Stefano Spezia, Mar 11 2021
Product_{n>=1} (1 + 1/a(n)) = phi (A001622) (Davlianidze, 2020). - Amiram Eldar, Nov 30 2021
Extensions
More terms from James Sellers, Mar 03 2003
Comments