A081038 3rd binomial transform of (1,2,0,0,0,0,0,0,...).
1, 5, 21, 81, 297, 1053, 3645, 12393, 41553, 137781, 452709, 1476225, 4782969, 15411789, 49424013, 157837977, 502211745, 1592728677, 5036466357, 15884240049, 49977243081, 156905298045, 491636600541, 1537671920841
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 13.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 67.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Crossrefs
Programs
-
Magma
[(2*n+3)*3^(n-1): n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
-
Maple
A081038:=n->(2*n+3)*3^(n-1): seq(A081038(n), n=0..30); # Wesley Ivan Hurt, Mar 07 2016
-
Mathematica
LinearRecurrence[{6,-9},{1,5},40] (* Harvey P. Dale, Jun 22 2012 *)
Formula
G.f.: (1-x)/(1-3*x)^2.
a(n) = 6*a(n-1) - 9*a(n-2), with a(0)=1, a(1)=5.
a(n) = (2*n+3)*3^(n-1).
a(n) = Sum_{k=0..n} (k+1)*2^k*binomial(n, k).
a(n) = 2*A086972(n) - 1. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 10 2008
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*(sqrt(3)*arctanh(1/sqrt(3)) - 1).
Sum_{n>=0} (-1)^n/a(n) = 9 - 3*sqrt(3)*Pi/2. (End)
E.g.f.: exp(3*x)*(1 + 2*x). - Stefano Spezia, Jan 31 2025
Comments