cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081038 3rd binomial transform of (1,2,0,0,0,0,0,0,...).

Original entry on oeis.org

1, 5, 21, 81, 297, 1053, 3645, 12393, 41553, 137781, 452709, 1476225, 4782969, 15411789, 49424013, 157837977, 502211745, 1592728677, 5036466357, 15884240049, 49977243081, 156905298045, 491636600541, 1537671920841
Offset: 0

Views

Author

Paul Barry, Mar 03 2003

Keywords

Comments

a(n) is the number of distinguished parts in all compositions of n+1 in which some (possibly all or none) of the parts have been distinguished. a(1) = 2 because we have: 2', 1'+1, 1+1', 1'+1' where we see 5's marking the distinguished parts. With offset=1, a(n) = Sum_{k=1..n} A200139(n,k)*k. - Geoffrey Critzer, Jan 12 2013
For n>=1, a(n-1) the number of ternary strings of length 2n containing the block 11..12 with n ones where no runs of length larger than n are permitted. - Marko Riedel, Mar 08 2016
Binomial transform of {A001787(n + 1)}{n >= 0}. - _Wolfdieter Lang, Oct 01 2019

Crossrefs

Programs

Formula

G.f.: (1-x)/(1-3*x)^2.
a(n) = 6*a(n-1) - 9*a(n-2), with a(0)=1, a(1)=5.
a(n) = (2*n+3)*3^(n-1).
a(n) = Sum_{k=0..n} (k+1)*2^k*binomial(n, k).
a(n) = 2*A086972(n) - 1. - Lambert Herrgesell (zero815(AT)googlemail.com), Feb 10 2008
From Amiram Eldar, May 17 2022: (Start)
Sum_{n>=0} 1/a(n) = 9*(sqrt(3)*arctanh(1/sqrt(3)) - 1).
Sum_{n>=0} (-1)^n/a(n) = 9 - 3*sqrt(3)*Pi/2. (End)
E.g.f.: exp(3*x)*(1 + 2*x). - Stefano Spezia, Jan 31 2025