A081109
9th binomial transform of (1,1,0,0,0,0,0,...).
Original entry on oeis.org
1, 10, 99, 972, 9477, 91854, 885735, 8503056, 81310473, 774840978, 7360989291, 69735688020, 659002251789, 6213449802582, 58462914051567, 549043018919064, 5147278302366225, 48178524910147866, 450283905890997363
Offset: 0
A081107
7th binomial transform of (1,1,0,0,0,0,...).
Original entry on oeis.org
1, 8, 63, 490, 3773, 28812, 218491, 1647086, 12353145, 92236816, 686011319, 5084554482, 37569208117, 276825744020, 2034669218547, 14920907602678, 109193914728689, 797590333670424, 5815762849680175, 42338753545671674, 307770170005074861, 2234183456333136028
Offset: 0
A081122
10th binomial transform of (1,1,0,0,0,0,...).
Original entry on oeis.org
1, 11, 120, 1300, 14000, 150000, 1600000, 17000000, 180000000, 1900000000, 20000000000, 210000000000, 2200000000000, 23000000000000, 240000000000000, 2500000000000000, 26000000000000000, 270000000000000000
Offset: 0
A089944
Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0
Rows begin:
{1, 2, 3, 4, 5, 6, 7,..},
{1, 3, 8, 20, 48, 112, 256,..},
{1, 4, 15, 54, 189, 648, 2187,..},
{1, 5, 24, 112, 512, 2304, 10240,..},
{1, 6, 35, 200, 1125, 6250, 34375,..},
{1, 7, 48, 324, 2160, 14256, 93312,..},
{1, 8, 63, 490, 3773, 28812, 218491,..},..
-
A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
-
T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))
Showing 1-4 of 4 results.
Comments