cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A081109 9th binomial transform of (1,1,0,0,0,0,0,...).

Original entry on oeis.org

1, 10, 99, 972, 9477, 91854, 885735, 8503056, 81310473, 774840978, 7360989291, 69735688020, 659002251789, 6213449802582, 58462914051567, 549043018919064, 5147278302366225, 48178524910147866, 450283905890997363
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(0,j) = j; m(i,0) = i and m(i,j) = m(i-1,j) + 8*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

  • Magma
    [(n+9)*9^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - 8 x) / (1 - 9 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)

Formula

a(n) = 18*a(n-1) - 81*a(n-2), a(0) = 1, a(1) = 10.
a(n) = (n + 9)*9^(n-1).
G.f.: (1 - 8*x)/(1 - 9*x)^2.
E.g.f.: exp(9*x)*(1 + x). - Stefano Spezia, Mar 04 2023

A081107 7th binomial transform of (1,1,0,0,0,0,...).

Original entry on oeis.org

1, 8, 63, 490, 3773, 28812, 218491, 1647086, 12353145, 92236816, 686011319, 5084554482, 37569208117, 276825744020, 2034669218547, 14920907602678, 109193914728689, 797590333670424, 5815762849680175, 42338753545671674, 307770170005074861, 2234183456333136028
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Comments

Main diagonal of array defined by m(0,j) = j; m(i,0) = i and m(i,j) = m(i-1,j) + 6*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003

Crossrefs

Programs

  • Magma
    [(n+7)*7^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - 6 x)/(1 - 7 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)

Formula

a(n) = 14*a(n-1) - 49*a(n-2) with n > 1, a(0) = 1, a(1) = 8.
a(n) = (n + 7)*7^(n-1).
G.f.: (1 - 6*x)/(1 - 7*x)^2.
E.g.f.: exp(7*x)*(1 + x). - Stefano Spezia, Mar 05 2023

A081122 10th binomial transform of (1,1,0,0,0,0,...).

Original entry on oeis.org

1, 11, 120, 1300, 14000, 150000, 1600000, 17000000, 180000000, 1900000000, 20000000000, 210000000000, 2200000000000, 23000000000000, 240000000000000, 2500000000000000, 26000000000000000, 270000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 07 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n+10)*10^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - 9 x) / (1 - 10 x)^2, {x, 0, 20}], x] (* Vincenzo Librandi, Aug 06 2013 *)

Formula

a(n) = 20*a(n-1) - 100*a(n-2), a(0) = 1, a(1) = 11.
a(n) = (n + 10)*10^(n-1).
G.f.: (1 - 9*x)/(1 - 10*x)^2.
E.g.f.: exp(10*x)*(1 + x). - Stefano Spezia, Mar 04 2023

A089944 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

The main diagonal is A089945: {T(n,n)=(2*n+1)*(n+1)^(n-1), n>=0}; the hyperbinomial transform of the main diagonal is the next lower diagonal in the array (A089946): {T(n+1,n) = 2*(n+1)*(n+2)^(n-1), n>=0}.

Examples

			Rows begin:
  {1, 2, 3, 4, 5, 6, 7,..},
  {1, 3, 8, 20, 48, 112, 256,..},
  {1, 4, 15, 54, 189, 648, 2187,..},
  {1, 5, 24, 112, 512, 2304, 10240,..},
  {1, 6, 35, 200, 1125, 6250, 34375,..},
  {1, 7, 48, 324, 2160, 14256, 93312,..},
  {1, 8, 63, 490, 3773, 28812, 218491,..},..
		

Crossrefs

Programs

  • Mathematica
    A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
    Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • PARI
    T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))

Formula

T(n,k) = (k+n+1)*(n+1)^(k-1).
E.g.f.: (1+x)*exp(x)/(1-y*exp(x)).
Showing 1-4 of 4 results.