A081108 8th binomial transform of (1,1,0,0,0,0,...).
1, 9, 80, 704, 6144, 53248, 458752, 3932160, 33554432, 285212672, 2415919104, 20401094656, 171798691840, 1443109011456, 12094627905536, 101155069755392, 844424930131968, 7036874417766400, 58546795155816448, 486388759756013568
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (16,-64).
Programs
-
Magma
[(n+8)*8^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
-
Mathematica
LinearRecurrence[{16,-64},{1,9},30] (* Harvey P. Dale, Jun 11 2013 *) CoefficientList[Series[(1 - 7 x) / (1 - 8 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
-
PARI
a(n)=(n+8)*8^(n-1) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 16*a(n-1) - 64*a(n-2), a(0) = 1, a(1) = 9.
a(n) = (n + 8)*8^(n-1).
G.f.: (1 - 7*x)/(1 - 8*x)^2.
E.g.f.: exp(8*x)*(1 + x). - Stefano Spezia, Mar 04 2023
Comments