A081257 a(n) is the greatest prime factor of (n^3 - 1).
7, 13, 7, 31, 43, 19, 73, 13, 37, 19, 157, 61, 211, 241, 13, 307, 17, 127, 421, 463, 13, 79, 601, 31, 37, 757, 271, 67, 29, 331, 151, 1123, 397, 97, 43, 67, 1483, 223, 547, 1723, 139, 631, 283, 109, 103, 61, 181, 43, 2551, 379, 919, 409, 2971, 79, 103, 3307, 163
Offset: 2
Examples
a(7)=19 because 7^3 - 1 = 342 = 2*3*3*19.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 2..10000 (first 999 terms from R. J. Mathar).
Crossrefs
Programs
-
Maple
A081257 := proc(n) A006530( n^3-1) ; end proc: # R. J. Mathar, Jul 18 2015
-
Mathematica
FactorInteger[#][[-1,1]]&/@(Range[2,60]^3-1) (* Harvey P. Dale, Oct 09 2017 *)
-
PARI
a(n)=my(f=factor(n^3-1)); f[#f~,1] \\ Charles R Greathouse IV, Mar 08 2017
-
Python
from sympy import primefactors def A081257(n): return max(primefactors(n-1)+primefactors(n*(n+1)+1)) # Chai Wah Wu, Oct 15 2022
Formula
Extensions
More terms from Hugo Pfoertner, Jun 21 2004
Comments