cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081341 Expansion of exp(3*x)*cosh(3*x).

Original entry on oeis.org

1, 3, 18, 108, 648, 3888, 23328, 139968, 839808, 5038848, 30233088, 181398528, 1088391168, 6530347008, 39182082048, 235092492288, 1410554953728, 8463329722368, 50779978334208, 304679870005248, 1828079220031488, 10968475320188928, 65810851921133568
Offset: 0

Views

Author

Paul Barry, Mar 18 2003

Keywords

Comments

Binomial transform of A081340. 3rd binomial transform of (1,0,9,0,81,0,729,0,...).
For m > 1, n > 0, A166469(A002110(m)*a(n)) = (n+1)*A000045(m+1). For n > 0, A166469(a(n)) = 2n. - Matthew Vandermast, Nov 05 2009
Number of compositions of even natural numbers in n parts <= 5. - Adi Dani, May 29 2011

Examples

			From _Adi Dani_, May 29 2011: (Start)
a(2)=18: there are 18 compositions of even natural numbers into 2 parts <= 5:
  for 0: (0,0);
  for 2: (0,2),(2,0),(1,1);
  for 4: (0,4),(4,0),(1,3),(3,1),(2,2);
  for 6: (1,5),(5,1),(2,4),(4,2),(3,3);
  for 8: (3,5),(5,3),(4,4);
  for 10: (5,5).  (End)
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(3^j*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 22 2017
  • Mathematica
    Table[Ceiling[1/2(6^n)], {n, 0, 25}]
    CoefficientList[Series[-(-1 + 3 x)/(1 - 6 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
    Join[{1},NestList[6#&,3,30]] (* Harvey P. Dale, May 25 2019 *)
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec((1-3*x)/(1-6*x)) /* show terms */ /* Joerg Arndt, May 29 2011 */

Formula

a(0)=1, a(n) = 6^n/2, n > 0.
G.f.: (1-3*x)/(1-6*x).
E.g.f.: exp(3*x)*cosh(3*x).
a(n) = A000244(n)*A011782(n). - Philippe Deléham, Dec 01 2008
a(n) = ((3+sqrt(9))^n + (3-sqrt(9))^n)/2. - Al Hakanson (hawkuu(AT)gmail.com), Dec 08 2008
a(n) = Sum_{k=0..n} A134309(n,k)*3^k = Sum_{k=0..n} A055372(n,k)*2^k. - Philippe Deléham, Feb 04 2012
From Sergei N. Gladkovskii, Jul 19 2012: (Start)
a(n) = ((8*n-4)*a(n-1) - 12*(n-2)*a(n-2))/n, a(0)=1, a(1)=3.
E.g.f. (exp(6*x) + 1)/2 = 1 + 3*x/(G(0) - 6*x) where G(k) = 6*x + 1 + k - 6*x*(k+1)/G(k+1) (continued fraction, Euler's 1st kind, 1-step). (End)
"INVERT" transform of A000244. - Alois P. Heinz, Sep 22 2017

Extensions

Typo in A-number fixed by Klaus Brockhaus, Apr 04 2010