cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A046716 Coefficients of a special case of Poisson-Charlier polynomials.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 8, 1, 1, 10, 29, 24, 1, 1, 15, 75, 145, 89, 1, 1, 21, 160, 545, 814, 415, 1, 1, 28, 301, 1575, 4179, 5243, 2372, 1, 1, 36, 518, 3836, 15659, 34860, 38618, 16072, 1, 1, 45, 834, 8274, 47775, 163191, 318926, 321690, 125673, 1, 1, 55, 1275, 16290, 125853, 606417, 1809905, 3197210, 2995011, 1112083, 1
Offset: 0

Views

Author

Keywords

Comments

Diagonals: A000012, A000217; A000012, A002104. - Philippe Deléham, Jun 12 2004
The sequence a(n) = Sum_{k = 0..n} T(n,k)*x^(n-k) is the binomial transform of the sequence b(n) = (n+x-1)! / (x-1)!. - Philippe Deléham, Jun 18 2004

Examples

			Triangle starts:
  1;
  1,  1;
  1,  3,   1;
  1,  6,   8,    1;
  1, 10,  29,   24,     1;
  1, 15,  75,  145,    89,     1;
  1, 21, 160,  545,   814,   415,     1;
  1, 28, 301, 1575,  4179,  5243,  2372,     1;
  1, 36, 518, 3836, 15659, 34860, 38618, 16072,   1;
		

Crossrefs

Diagonals include: A000012, A000217, A002104.
Sums include: A000522 (row), A001339, A023443 (alternating sign row), A082030, A081367.

Programs

  • Magma
    A046716:= func< n,k | (&+[(-1)^j*Binomial(n,k-j)*StirlingFirst(j+n-k, n-k): j in [0..k]]) >;
    [A046716(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 31 2024
    
  • Maple
    a := proc(n,k) option remember;
       if k = 0 then 1
    elif k < 0 then 0
    elif k = n then (-1)^n
    else a(n-1,k) - n*a(n-1,k-1) - (n-1)*a(n-2,k-2) fi end:
    A046716 := (n,k) -> abs(a(n,k));
    seq(seq(A046716(n,k),k=0..n),n=0..9); # Peter Luschny, Apr 05 2011
  • Mathematica
    t[, 0] = 1; t[n, k_] := (-1)^k*Sum[(-1)^i*Binomial[n, i]*StirlingS1[i, n-k], {i, n-k, n}]; Table[t[n, k] // Abs, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)
    T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, T[n-1,k] +n*T[n-1,k-1] - (n-1)*T[n-2,k-2]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 31 2024 *)
  • SageMath
    def A046716(n, k): return sum(binomial(n, k-j)*stirling_number1(j+n-k, n-k) for j in range(k+1))
    flatten([[A046716(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 31 2024

Formula

Enneking and Ahuja reference gives the recurrence t(n, k) = t(n-1, k) - n*t(n-1, k-1) - (n-1)*t(n-2, k-2), with t(n, 0) = 1 and t(n, n) = (-1)^n. This sequence is T(n, k) = (-1)^k * t(n, k).
Sum_{k = 0..n} T(n, k)*x^(n-k) = A000522(n), A001339(n), A082030(n) for x = 1, 2, 3 respectively.
Sum_{k = 0..n} T(n, k)*2^k = A081367(n). - Philippe Deléham, Jun 12 2004
Let P(x, n) = Sum_{k = 0..n} T(n, k)*x^k, then Sum_{n>=0} P(x, n)*t^n / n! = exp(xt)/(1-xt)^(1/x). - Philippe Deléham, Jun 12 2004
T(n, 0) = 1, T(n, k) = (-1)^k * Sum_{i=n-k..n} (-1)^i*C(n, i)*S1(i, n-k), where S1 = Stirling numbers of first kind (A008275).
From G. C. Greubel, Jul 31 2024: (Start)
T(n, k) = T(n-1, k) + n*T(n-1, k-1) - (n-1)*T(n-2, k-2), with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^(n+1)*A023443(n). (End)

Extensions

More terms from Vladeta Jovovic, Jun 15 2004

A094822 E.g.f.: exp(3x)/(1-3x)^(1/3).

Original entry on oeis.org

1, 4, 19, 118, 1021, 12088, 183727, 3389242, 73156249, 1804349548, 50009179819, 1537920654526, 51952155415381, 1911990785926432, 76137201611236999, 3261400435090171522, 149530099101901409713, 7305923490645888605908, 378947686822932957638851
Offset: 0

Views

Author

Philippe Deléham, Jun 12 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n) for x = 1, 2 respectively.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3x]/Surd[1-3x,3],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 28 2018 *)

Formula

a(n) = Sum_{k = 0..n} A046716(n, k)*3^k.
a(n) ~ Gamma(2/3)*3^(n+1/2)*n^(n-1/6)/(sqrt(2*Pi)*exp(n-1)). - Vaclav Kotesovec, Jun 15 2013
Conjecture: D-finite with recurrence: a(n) +(-3*n-1)*a(n-1) +9*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 14 2019

Extensions

Corrected and extended by Harvey P. Dale, Jul 28 2018

A094856 E.g.f.: exp(4x)/(1-4x)^(1/4).

Original entry on oeis.org

1, 5, 29, 217, 2297, 34349, 674965, 16276481, 461527793, 14993138773, 548258687501, 22272738733865, 994870668959209, 48451779617935997, 2554818339078836357, 144990720049391354449, 8811240401831517313505, 570857963393730507892901, 39275973938444154366908413
Offset: 0

Views

Author

Philippe Deléham, Jun 13 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n) for x = 1, 2, 3 respectively.

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[E^(4x)/(1-4x)^(1/4),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 03 2012 *)
    With[{nn=20},CoefficientList[Series[Exp[4x]/(1-4x)^(1/4),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Mar 29 2013 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(4*x)/(1-4*x)^(1/4))) \\ Joerg Arndt, May 11 2013

Formula

a(n) = Sum_{k = 0..n} A046716(n, k)*4^k.
a(n) ~ n^(n-1/4)*4^n*Gamma(3/4)/(exp(n-1)*sqrt(Pi)). - Vaclav Kotesovec, Oct 03 2012
Conjectured to be D-finite with recurrence: a(n) +(-4*n-1)*a(n-1) +16*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2019

Extensions

Corrected and extended by Harvey P. Dale, Mar 29 2013

A094869 E.g.f.: exp(5x)/(1-5x)^(1/5).

Original entry on oeis.org

1, 6, 41, 356, 4401, 78826, 1893481, 56341416, 1978638881, 79749105326, 3622010623401, 182895318578956, 10160561511881041, 615728464210461906, 40414538467581457001, 2855999961062529064976, 216180544920721807887681
Offset: 0

Views

Author

Philippe Deléham, Jun 16 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n), A094856(n) for x = 1, 2, 3, 4 respectively.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[5x]/(1-5x)^(1/5),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 19 2014 *)

Formula

a(n) = Sum_{k = 0..n} A046716(n, k)*5^k.
Conjectured to be D-finite with recurrence: a(n) +(-5*n-1)*a(n-1) +25*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2019
a(n) ~ sqrt(2*Pi) * 5^n * n^(n - 3/10) / (Gamma(1/5) * exp(n-1)). - Vaclav Kotesovec, Nov 19 2021

A094905 Expansion of e.g.f.: exp(6*x)/(1-6*x)^(1/6).

Original entry on oeis.org

1, 7, 55, 541, 7585, 157231, 4452247, 157484725, 6594785281, 317357589655, 17222102537911, 1039632137764237, 69073193451776545, 5007661199176196671, 393324947394545293975, 33268708968518818629541
Offset: 0

Views

Author

Philippe Deléham, Jun 16 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n), A094856(n), A094869(n) for x = 1, 2, 3, 4, 5 respectively.

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[6x]/Surd[1-6x,6],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 15 2022 *)

Formula

E.g.f.: exp(6*x)/(1-6*x)^(1/6).
a(n) = Sum_{k = 0..n} A046716(n, k)*6^k.
Conjectured to be D-finite with recurrence: a(n) +(-6*n-1)*a(n-1) +36*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 15 2019
a(n) ~ sqrt(Pi) * 2^(n + 1/2) * 3^n * n^(n - 1/3) / (Gamma(1/6) * exp(n - 1)). - Vaclav Kotesovec, Nov 19 2021

A295099 a(n) = n! * [x^n] exp(n*x)/sqrt(1 - 2*x).

Original entry on oeis.org

1, 2, 11, 96, 1145, 17320, 317547, 6843872, 169603793, 4752704160, 148631984075, 5132717953792, 194022218612169, 7969667589513344, 353510496652374635, 16842274069331520000, 857827370723082312737, 46516913938434654949888, 2675772791433589181094027, 162742831545094476694814720
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A001147.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/Sqrt[1 - 2 x], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2^(n+1) * n^n / exp(n/2). - Vaclav Kotesovec, Nov 14 2017

A094911 Expansion of e.g.f. exp(7*x)/(1-7*x)^(1/7).

Original entry on oeis.org

1, 8, 71, 778, 12125, 284012, 9241891, 378595022, 18409947641, 1029827400400, 64998958518719, 4565303338264082, 353016345110857429, 29793105387299603252, 2724646021507044539675, 268374407984059193374678
Offset: 0

Views

Author

Philippe Deléham, Jun 17 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n), A094856(n), A094869(n), A094905(n) for x = 1, 2, 3, 4, 5, 6 respectively.

Crossrefs

Programs

  • PARI
    my(x='x+O('x^20)); Vec(serlaplace(exp(7*x)/(1-7*x)^(1/7))) \\ Michel Marcus, Jan 23 2023

Formula

a(n) = Sum_{k = 0..n} A046716(n, k)*7^k.
Conjectured to be D-finite with recurrence: a(n) +(-7*n-1)*a(n-1) +49*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2019
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) * 7^n / (Gamma(1/7) * exp(n-1) * n^(6/7)). - Vaclav Kotesovec, Nov 19 2021

Extensions

Corrected by D. S. McNeil, Aug 20 2010

A094935 E.g.f.: exp(8x)/(1-8x)^(1/8).

Original entry on oeis.org

1, 9, 89, 1073, 18321, 476473, 17484457, 813648417, 45054110369, 2872362067433, 206710159889529, 16558892507010961, 1460688620617834801, 140655075719488236057, 14678730623948132120009
Offset: 0

Views

Author

Philippe Deléham, Jun 18 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n), A094856(n), A094869(n), A094905(n), A094911(n) for x = 1, 2, 3, 4, 5, 6, 7 respectively.

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[8x]/Surd[1-8x,8],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 25 2019 *)

Formula

a(n) = Sum_{k = 0..n} A046716(n, k)*8^k.
D-finite with recurrence: a(n) +(-8*n-1)*a(n-1) +64*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2019
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) * 8^n / (Gamma(1/8) * exp(n-1) * n^(7/8)). - Vaclav Kotesovec, Nov 19 2021

A095176 E.g.f.: exp(9x)/(1-9x)^(1/9).

Original entry on oeis.org

1, 10, 109, 1432, 26497, 754894, 30787885, 1603546156, 99602138593, 7128277455538, 576063289419661, 51832424202980320, 5136461847251936929, 555721381650431686582, 65167921144448534609677
Offset: 0

Views

Author

Philippe Deléham, Jun 20 2004

Keywords

Comments

Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n), A094856(n), A094869(n), A094905(n), A094911(n), A094935(n) for x = 1, 2, 3, 4, 5, 6, 7, 8 respectively.
From Vaclav Kotesovec, Nov 19 2021: (Start)
In general, for k > 0, if e.g.f. = exp(k*x) / (1 - k*x)^(1/k), then a(n) ~ sqrt(2*Pi) * n^(n + 1/2) * k^n / (Gamma(1/k) * exp(n-1) * n^(1 - 1/k)).
Equivalently, a(n) ~ n! * exp(1) * k^n / (Gamma(1/k) * n^(1 - 1/k)). (End)

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[9x]/Surd[1-9x,9],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 25 2020 *)

Formula

a(n) = Sum_{k = 0..n} A046716(n, k)*9^k.
D-finite with recurrence a(n) +(-9*n-1)*a(n-1) +81*(n-1)*a(n-2)=0. - R. J. Mathar, Aug 20 2021
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) * 9^n / (Gamma(1/9) * exp(n-1) * n^(8/9)). - Vaclav Kotesovec, Nov 19 2021
Showing 1-9 of 9 results.