A081437 Diagonal in array of n-gonal numbers A081422.
1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Circuit Rank
- Eric Weisstein's World of Mathematics, Rook Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
-
Magma
[n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
-
Maple
a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008 a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=1..40); # Zerinvary Lajos, Dec 06 2008
-
Mathematica
Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *) CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
-
PARI
vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
-
Sage
[(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
Formula
a(n) = n^3 + 4*n^2 + 4*n + 1.
G.f.: (1 +5*x -7*x^2 +x^3)/(1-x)^5.
a(0)=1, a(1)=10, a(2)=33, a(3)=76; for n>3, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Jan 24 2012
E.g.f.: (1 +9*x +7*x^2 +x^3)*exp(x). - G. C. Greubel, Aug 14 2019
Comments