cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081437 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.
For q a prime power, a(q-1) = q^3 + q^2 - q is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GF(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, there are q^2-1 nonzero nilpotent matrices, all conjugate, each commuting with q nilpotent matrices.) - Mark Wildon, Jun 20 2017
Also the cyclomatic number (= circuit rank) of the n+1 X n+1 rook graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Equals A027620(n-1) + 1.

Programs

  • GAP
    List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
  • Magma
    [n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008
    a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=1..40); # Zerinvary Lajos, Dec 06 2008
  • Mathematica
    Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *)
    CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = n^3 + 4*n^2 + 4*n + 1.
G.f.: (1 +5*x -7*x^2 +x^3)/(1-x)^5.
a(0)=1, a(1)=10, a(2)=33, a(3)=76; for n>3, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Jan 24 2012
E.g.f.: (1 +9*x +7*x^2 +x^3)*exp(x). - G. C. Greubel, Aug 14 2019