cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081438 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 11, 36, 82, 155, 261, 406, 596, 837, 1135, 1496, 1926, 2431, 3017, 3690, 4456, 5321, 6291, 7372, 8570, 9891, 11341, 12926, 14652, 16525, 18551, 20736, 23086, 25607, 28305, 31186, 34256, 37521, 40987, 44660, 48546, 52651, 56981, 61542, 66340
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.

Crossrefs

Programs

  • GAP
    List([0..45], n-> (2*n^3+9*n^2+9*n+2)/2); # G. C. Greubel, Aug 14 2019
  • Magma
    [(2*n^3+9*n^2+9*n+2)/2: n in [0..45]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    seq((2*n^3+9*n^2+9*n+2)/2, n=0..45); # G. C. Greubel, Aug 14 2019
  • Mathematica
    CoefficientList[Series[(1 +6x -9x^2 +2x^3)/(1-x)^5, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2013 *)
    LinearRecurrence[{4,-6,4,-1},{1,11,36,82},50] (* Harvey P. Dale, Jan 20 2022 *)
  • PARI
    vector(45, n, n--; (2*n^3+9*n^2+9*n+2)/2) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(2*n^3+9*n^2+9*n+2)/2 for n in (0..45)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = (2*n^3+9*n^2+9*n+2)/2.
G.f.: (1+6*x-9*x^2+2*x^3)/(1-x)^5.
From Bruno Berselli, Jun 04 2010: (Start)
G.f.: (1+7*x-2*x^2)/(1-x)^4 (simplified).
a(n) = (n+1)*(2*n^2+7*n+2)/2.
a(n) -4*a(n-1) +6*a(n-2) -4*a(n-3) +a(n-4) = 0, with n>3.
a(n) = (A177058(n+3) + A177058(n+2))/2. (End)
E.g.f.: (1/2)*exp(x)*(2 +20*x + 15*x^2 + 2*x^3). - Stefano Spezia, Aug 15 2019