A081438 Diagonal in array of n-gonal numbers A081422.
1, 11, 36, 82, 155, 261, 406, 596, 837, 1135, 1496, 1926, 2431, 3017, 3690, 4456, 5321, 6291, 7372, 8570, 9891, 11341, 12926, 14652, 16525, 18551, 20736, 23086, 25607, 28305, 31186, 34256, 37521, 40987, 44660, 48546, 52651, 56981, 61542, 66340
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..45], n-> (2*n^3+9*n^2+9*n+2)/2); # G. C. Greubel, Aug 14 2019
-
Magma
[(2*n^3+9*n^2+9*n+2)/2: n in [0..45]]; // Vincenzo Librandi, Aug 08 2013
-
Maple
seq((2*n^3+9*n^2+9*n+2)/2, n=0..45); # G. C. Greubel, Aug 14 2019
-
Mathematica
CoefficientList[Series[(1 +6x -9x^2 +2x^3)/(1-x)^5, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2013 *) LinearRecurrence[{4,-6,4,-1},{1,11,36,82},50] (* Harvey P. Dale, Jan 20 2022 *)
-
PARI
vector(45, n, n--; (2*n^3+9*n^2+9*n+2)/2) \\ G. C. Greubel, Aug 14 2019
-
Sage
[(2*n^3+9*n^2+9*n+2)/2 for n in (0..45)] # G. C. Greubel, Aug 14 2019
Formula
a(n) = (2*n^3+9*n^2+9*n+2)/2.
G.f.: (1+6*x-9*x^2+2*x^3)/(1-x)^5.
From Bruno Berselli, Jun 04 2010: (Start)
G.f.: (1+7*x-2*x^2)/(1-x)^4 (simplified).
a(n) = (n+1)*(2*n^2+7*n+2)/2.
a(n) -4*a(n-1) +6*a(n-2) -4*a(n-3) +a(n-4) = 0, with n>3.
E.g.f.: (1/2)*exp(x)*(2 +20*x + 15*x^2 + 2*x^3). - Stefano Spezia, Aug 15 2019
Comments