cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A081494 Start with Pascal's triangle; form a triangle by sliding down n steps from top on both sides and including the horizontal row, deleting the inner numbers; a(n) = sum of entries on perimeter of triangle.

Original entry on oeis.org

1, 3, 7, 13, 23, 41, 75, 141, 271, 529, 1043, 2069, 4119, 8217, 16411, 32797, 65567, 131105, 262179, 524325, 1048615, 2097193, 4194347, 8388653, 16777263, 33554481, 67108915, 134217781, 268435511, 536870969, 1073741883, 2147483709
Offset: 1

Views

Author

Amarnath Murthy, Mar 25 2003

Keywords

Examples

			The triangle pertaining to n = 4 is obtained from the solid triangle
        1
      1   1
    1   2   1
  1   3   3   1
giving
        1
      1   1
    1       1
  1   3   3   1
and the sum of all the numbers is 13, so a(4) = 13.
		

Crossrefs

First differences of A290707.

Programs

  • Maple
    restart:a:= proc(n) option remember; if n=0 then 1 else add((binomial (n,j)+2), j=0..n-1) fi end: seq (a(n), n=0..31); # Zerinvary Lajos, Mar 29 2009

Formula

For n > 1, a(n) = A061761(n-1). - David Wasserman, Jun 03 2004

Extensions

Corrected and extended by David Wasserman, Jun 03 2004

A081495 Start with Pascal's triangle; form a rhombus by sliding down n steps from top on both sides then sliding down inwards to complete the rhombus and then deleting the inner numbers; a(n) = sum of entries on perimeter of rhombus.

Original entry on oeis.org

1, 5, 17, 55, 189, 681, 2519, 9451, 35765, 136153, 520695, 1998745, 7696467, 29716025, 115000947, 445962899, 1732525861, 6741529113, 26270128535, 102501265057, 400411345659, 1565841089321, 6129331763923, 24014172955545, 94163002754699, 369507926510401
Offset: 1

Views

Author

Amarnath Murthy, Mar 25 2003

Keywords

Examples

			The rhombus pertaining to n = 4 is obtained from the solid rhombus
.....1
...1...1
.1...2...1
1..3...3...1
..4..6...4
...10..10
.....20
giving
.....1
...1...1
.1.......1
1..........1
..4......4
...10..10
.....20
and the sum of all the numbers is 55, a(4) = 55.
		

Crossrefs

Programs

  • GAP
    B:=Binomial;; Concatenation([1], List([2..25], n-> B(2*n, n)-B(2*(n-1), n-1) +2*n -3)); # G. C. Greubel, Aug 13 2019
  • Magma
    C:=Catalan; [1] cat [(n+1)*C(n) -n*C(n-1) +2*n-3: n in [2..25]]; // G. C. Greubel, Aug 13 2019
    
  • Maple
    seq(coeff(series(((1-x)^3 - (1-2*x-x^3)*sqrt(1-4*x))/((1-x)^2*sqrt(1-4*x) ), x, n+1), x, n), n = 1..25); # G. C. Greubel, Aug 13 2019
  • Mathematica
    With[{C = CatalanNumber}, Table[If[n==1, 1, (n+1)*C[n] -n*C[n-1] +2*n-3], {n, 25}]] (* G. C. Greubel, Aug 13 2019 *)
  • PARI
    vector(25, n, b=binomial; if(n==1,1,b(2*n, n)-b(2*(n-1), n-1) +2*n -3)) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    b=binomial; [1]+[b(2*n, n)-b(2*(n-1), n-1) +2*n -3 for n in (2..25)] # G. C. Greubel, Aug 13 2019
    

Formula

a(0)=1 for n>0 a(n)=binomial(2*n, n)-binomial(2*n-2, n-1)+2*n-3. - Benoit Cloitre, Sep 10 2003
G.f.: ((1-x)^3 - (1-2*x-x^3)*sqrt(1-4*x))/((1-x)^2*sqrt(1-4*x)). - G. C. Greubel, Aug 13 2019

Extensions

More terms from Benoit Cloitre, Sep 10 2003

A028270 Central elements in 3-Pascal triangle A028262 (by row).

Original entry on oeis.org

1, 3, 8, 26, 90, 322, 1176, 4356, 16302, 61490, 233376, 890188, 3409588, 13104756, 50517200, 195234120, 756197910, 2934686610, 11408741520, 44420399100, 173191792620, 676104403260, 2642356838160, 10337529691320, 40481034410700
Offset: 0

Views

Author

Keywords

Comments

Or, start with Pascal's triangle; a(n) is the sum of the numbers on the periphery of the n-th central triangle containing exactly 3 numbers. The first three triangles are
...1...........2.........6
.1...1.......3...3.....10..10
and the corresponding sums are 3, 8 and 26. - Amarnath Murthy, Mar 25 2003
This sequence starting at a(n+2) has Hankel transform A000032(2n+1)*2^n (empirical observation). - Tony Foster III, May 20 2016

Crossrefs

Programs

  • Maple
    seq(binomial(2*n,n)+binomial(2*n-2,n-1),n=0..24);
    seq(2*binomial(2*n-1,n-1)+binomial(2*n-2,n-1),n=1..24);

Formula

G.f.: (x+1)/sqrt(1-4*x). - Vladeta Jovovic, Jan 08 2004
a(n) = binomial(2n, n)+binomial(2n-2, n-1)=A000984(n)+A000984(n-1). - Emeric Deutsch, Apr 20 2004
a(n) = 2binomial(2n-1, n-1)+binomial(2n-2, n-1). - Emeric Deutsch, Apr 20 2004
a(n) = (n+1)*C(n) + n*C(n-1), C = Catalan number (A000108). - Gary W. Adamson, Dec 28 2007
G.f.: G(0) where G(k)= 1 + x/(1 - (4*k+2)/((4*k+2) + (k+1)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 24 2012
D-finite with recurrence n*a(n) -3*n*a(n-1) +2*(-2*n+5)*a(n-2)=0. - R. J. Mathar, May 01 2024

Extensions

More terms from James Sellers
Showing 1-3 of 3 results.