cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081574 Fourth binomial transform of Fibonacci numbers F(n).

Original entry on oeis.org

0, 1, 9, 62, 387, 2305, 13392, 76733, 436149, 2467414, 13919895, 78398189, 441105696, 2480385673, 13942462833, 78354837710, 440286745563, 2473838793577, 13899100976496, 78088971710501, 438717826841085
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of A099453(n-1):= [0,1,7,38,189,905,...].
Case k=4 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2), a(0)=0, a(1)=1.

Crossrefs

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=9*a[n-1]-19*a[n-2]; od; a; # G. C. Greubel, Aug 13 2019
  • Magma
    [n le 2 select (n-1) else 9*Self(n-1)-19*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 09 2013
    
  • Maple
    seq(coeff(series(x/(1-9*x+19*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 13 2019
  • Mathematica
    Join[{a=0,b=1},Table[c=9*b-19*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
    LinearRecurrence[{9,-19},{0,1},30] (* Harvey P. Dale, Dec 03 2011 *)
    CoefficientList[Series[x/(1 -9x +19x^2), {x, 0,  30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(x/(1 - 9*x + 19*x^2)) \\ G. C. Greubel, Aug 13 2019
    
  • Sage
    [lucas_number1(n,9,19) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

a(n) = 9*a(n-1) - 19*a(n-1), a(0)=0, a(1)=1.
a(n) = ((sqrt(5)/2 + 9/2)^n - (9/2 - sqrt(5)/2)^n)/sqrt(5).
G.f.: x/(1 - 9*x + 19*x^2).
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Aug 11 2017

Extensions

Corrected by Philippe Deléham, Dec 16 2009