cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A144150 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where the e.g.f. of column k is 1+g^(k+1)(x) with g = x-> exp(x)-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 12, 15, 1, 1, 1, 5, 22, 60, 52, 1, 1, 1, 6, 35, 154, 358, 203, 1, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 1, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 1, 1, 10, 117
Offset: 0

Views

Author

Alois P. Heinz, Sep 11 2008

Keywords

Comments

A(n,k) is also the number of (k+1)-level labeled rooted trees with n leaves.
Number of ways to start with set {1,2,...,n} and then repeat k times: partition each set into subsets. - Alois P. Heinz, Aug 14 2015
Equivalently, A(n,k) is the number of length k+1 multichains from bottom to top in the set partition lattice of an n-set. - Geoffrey Critzer, Dec 05 2020

Examples

			Square array begins:
  1,  1,   1,    1,    1,    1,  ...
  1,  1,   1,    1,    1,    1,  ...
  1,  2,   3,    4,    5,    6,  ...
  1,  5,  12,   22,   35,   51,  ...
  1, 15,  60,  154,  315,  561,  ...
  1, 52, 358, 1304, 3455, 7556,  ...
		

Crossrefs

Rows n=0+1, 2-5 give: A000012, A000027, A000326, A005945, A005946.
First lower diagonal gives A139383.
First upper diagonal gives A346802.
Main diagonal gives A261280.

Programs

  • Maple
    g:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1
          else (n-1)! *add(p(k)*b(n-k)/(k-1)!/(n-k)!, k=1..n) fi
        end end:
    A:= (n,k)-> (g@@k)(1)(n):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
    # second Maple program:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 14 2015
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, 1, `if`(n=0,
          b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    A:= (n, k)-> b(n, k, 0):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x - 1], x, k]; a[n_, k_] := SeriesCoefficient[1 + g[k + 1], {x, 0, n}]*n!; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 06 2013 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum([binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1)])
    for n in range(51): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, Aug 07 2017

Formula

E.g.f. of column k: 1 + g^(k+1)(x) with g = x-> exp(x)-1.
Column k+1 is Stirling transform of column k.

A139383 Number of n-level labeled rooted trees with n leaves.

Original entry on oeis.org

1, 1, 2, 12, 154, 3455, 120196, 5995892, 406005804, 35839643175, 3998289746065, 550054365477936, 91478394767427823, 18091315306315315610, 4196205472500769304318, 1128136777063831105273242, 347994813261017613045578964, 122080313159891715442898099217
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2008

Keywords

Comments

Define the matrix function matexps(M) to be exp(M)/exp(1). Then the number of k-level labeled rooted trees with n leaves is also column 0 of the triangle resulting from the n-th iteration of matexps on the Pascal matrix P, A007318. The resulting triangle is also S^n*P*S^-n, where S is the Stirling2 matrix A048993. This function can be coded in PARI as sum(k=0,200,1./k!*M^k)/exp(1), using exp(M) does not work. See A056857, which equals (1/e)*exp(P) or S*P*S^-1. - Gerald McGarvey, Aug 19 2009

Examples

			If we form a table from the family of sequences defined by:
number of k-level labeled rooted trees with n leaves,
then this sequence equals the diagonal in that table:
n=1:A000012=[1,1,1,1,1,1,1,1,1,1,...];
n=2:A000110=[1,2,5,15,52,203,877,4140,21147,115975,...];
n=3:A000258=[1,3,12,60,358,2471,19302,167894,1606137,...];
n=4:A000307=[1,4,22,154,1304,12915,146115,1855570,26097835,...];
n=5:A000357=[1,5,35,315,3455,44590,660665,11035095,204904830,...];
n=6:A000405=[1,6,51,561,7556,120196,2201856,45592666,1051951026,...];
n=7:A001669=[1,7,70,910,14532,274778,5995892,148154860,4085619622,...];
n=8:A081624=[1,8,92,1380,25488,558426,14140722,406005804,13024655442,...];
n=9:A081629=[1,9,117,1989,41709,1038975,29947185,979687005,35839643175,..].
Row n in the above table equals column 0 of matrix power A008277^n where A008277 = triangle of Stirling numbers of 2nd kind:
1;
1,1;
1,3,1;
1,7,6,1;
1,15,25,10,1;
1,31,90,65,15,1; ...
The name of this sequence is a generalization of the definition given in the above sequences by _Christian G. Bower_.
		

Crossrefs

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
        end:
    a:= n-> A(n, n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 14 2015
    # second Maple program:
    g:= x-> exp(x)-1:
    a:= n-> n! * coeff(series(1+(g@@n)(x), x, n+1), x, n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 31 2017
    # third Maple program:
    b:= proc(n, t, m) option remember; `if`(t=0, `if`(n<2, 1, 0),
         `if`(n=0, b(m, t-1, 0), m*b(n-1, t, m)+b(n-1, t, m+1)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 04 2021
  • Mathematica
    t[n_,m_]:=t[n,m] = If[m==1,1,Sum[StirlingS2[n,k]*t[k,m-1],{k,1,n}]]; Table[t[n,n],{n,1,20}] (* Vaclav Kotesovec, Aug 14 2015 after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if m=1 then 1 else sum(stirling2(n,i)*T(i,m-1),i,1,n);
    makelist(T(n,n),n,1,7); /* Vladimir Kruchinin, May 19 2012 */
    
  • PARI
    {a(n)=local(E=exp(x+x*O(x^n))-1,F=x); for(i=1,n,F=subst(F,x,E));n!*polcoeff(F,n)}
    
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def A(n, k): return 1 if n==0 or k==0 else sum(binomial(n - 1, j - 1)*A(j, k - 1)*A(n - j, k) for j in range(1, n + 1))
    def a(n): return A(n, n - 1)
    print([a(n) for n in range(21)]) # Indranil Ghosh, Aug 07 2017, after Maple code

Formula

a(n) = T(n,n), T(n,m) = Sum_{i=1..n} Stirling2(n,i)*T(i,m-1), m>1, T(n,1)=1. - Vladimir Kruchinin, May 19 2012
a(n) = n! * [x^n] 1 + g^n(x), where g(x) = exp(x)-1. - Alois P. Heinz, Aug 14 2015
From Vaclav Kotesovec, Aug 14 2015: (Start)
Conjecture: a(n) ~ c * n^(2*n-5/6) / (2^(n-1) * exp(n)), where c = 2.86539...
a(n) ~ exp(-1) * A261280(n).
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jul 31 2017

A111672 Array T(n,k) = A153277(n-1,k) = A144150(n,k-1) read by downwards antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 12, 15, 1, 1, 5, 22, 60, 52, 1, 1, 6, 35, 154, 358, 203, 1, 1, 7, 51, 315, 1304, 2471, 877, 1, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 14 2005

Keywords

Comments

Column k is obtained by taking the k-th matrix power of the triangle A008277 and multiplying from the right with the column vector [1,0,0,0,....].

Examples

			The array starts
1,  1,   1,    1,    1,    1,  ...
1,  2,   3,    4,    5,    6,  ...
1,  5,  12,   22,   35,   51,  ...
1, 15,  60,  154,  315,  561,  ...
1, 52, 358, 1304, 3455, 7556,  ...
		

Crossrefs

Cf. A000326 (row 3), A005945 (row 4), A000110 (column 2), A000258 (column 3), A000307 (column 4), A000357 (column 5), A000405 (column 6), A111669 (column 7), A081624.

Extensions

a(44) and definition corrected by Georg Fischer, May 18 2022

A153277 Array read by antidiagonals of higher order Bell numbers.

Original entry on oeis.org

1, 1, 2, 1, 3, 5, 1, 4, 12, 15, 1, 5, 22, 60, 52, 1, 6, 35, 154, 358, 203, 1, 7, 51, 315, 1304, 2471, 877, 1, 8, 70, 561, 3455, 12915, 19302, 4140, 1, 9, 92, 910, 7556, 44590, 146115, 167894, 21147, 1, 10, 117, 1380, 14532, 120196, 660665, 1855570, 1606137, 115975
Offset: 1

Views

Author

Jonathan Vos Post, Dec 22 2008

Keywords

Comments

Mezo's abstract: The powers of matrices with Stirling number-coefficients are investigated. It is revealed that the elements of these matrices have a number of properties of the ordinary Stirling numbers. Moreover, "higher order" Bell, Fubini and Eulerian numbers can be defined. Hence we give a new interpretation for E. T. Bell's iterated exponential integers. In addition, it is worth to note that these numbers appear in combinatorial physics, in the problem of the normal ordering of quantum field theoretical operators.

Examples

			The table on p.4 of Mezo begins:
===========================================================
B_p,n|n=1|n=2|n=3.|.n=4.|..n=5.|....n=6.|.....n=7.|comment
===========================================================
p=1..|.1.|.2.|..5.|..15.|...52.|....203.|.....877.|.A000110
p=2..|.1.|.3.|.12.|..60.|..358.|...2471.|...19302.|.A000258
p=3..|.1.|.4.|.22.|.154.|.1304.|..12915.|..146115.|.A000307
p=4..|.1.|.5.|.35.|.315.|.3455.|..44590.|..660665.|.A000357
p=5..|.1.|.6.|.51.|.561.|.7556.|.120196.|.2201856.|.A000405
===========================================================
		

Crossrefs

From Alois P. Heinz, Feb 02 2009: (Start)
Truncated and reflected version of A144150.

Programs

  • Maple
    g:= proc(a) local b; b:=proc(n) option remember; if n=0 then 1 else (n-1)! *add (a(k)* b(n-k)/ (k-1)!/ (n-k)!, k=1..n) fi end end: B:= (p,n)-> (g@@p)(1)(n):
    seq(seq(B(d-n, n), n=1..d-1), d=1..12); # Alois P. Heinz, Feb 02 2009
  • Mathematica
    g[k_] := g[k] = Nest[Function[x, E^x-1], x, k]; a[n_, k_] := SeriesCoefficient[ 1+g[k+1], {x, 0, n}]*n!; Table[a[n, k-n+1], {k, 1, 12}, {n, 1, k}] // Flatten (* Jean-François Alcover, Jan 28 2015 *)

Extensions

More terms from Alois P. Heinz, Feb 02 2009
Showing 1-4 of 4 results.