cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A171476 a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0

Views

Author

Klaus Brockhaus, Dec 09 2009

Keywords

Comments

Binomial transform of A048473; second binomial transform of A151821; third binomial transform of A010684; fourth binomial transform of A084633 without second term 0; fifth binomial transform of A168589.
Inverse binomial transform of A081625; second inverse binomial transform of A081626; third inverse binomial transform of A081627.
Partial sums of A010036.
Essentially first differences of A006095.
a(n) = A109241(n) converted from binary to decimal. - Robert Price, Jan 19 2016
a(n) is the area enclosed by a Hilbert curve with unit length segments after n iterations, when the start and end points are joined. - Jennifer Buckley, Apr 23 2024

Crossrefs

Cf. A006516 (2^(n-1)*(2^n-1)), A020522 (4^n-2^n), A048473 (2*3^n-1), A151821 (powers of 2, omitting 2 itself), A010684 (repeat 1, 3), A084633 (inverse binomial transform of repeated odd numbers), A168589 ((2-3^n)*(-1)^n), A081625 (2*5^n-3^n), A081626 (2*6^n-4^n), A081627 (2*7^n-5^n), A010036 (sum of 2^n, ..., 2^(n+1)-1), A006095 (Gaussian binomial coefficient [n, 2] for q=2), A171472, A171473.

Programs

  • Magma
    [2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
  • Mathematica
    LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
  • PARI
    m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
    

Formula

a(n) = Sum_{k=1..2^n-1} k.
a(n) = 2*4^n - 2^n.
G.f.: 1/((1-2*x)*(1-4*x)).
a(n) = A006516(n+1).
a(n) = 4*a(n-1) + 2^n for n > 0, a(0)=1. - Vincenzo Librandi, Jul 17 2011
a(n) = Sum_{k=0..n} 2^(n+k). - Bruno Berselli, Aug 07 2013
a(n) = A020522(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: exp(2*x)*(2*exp(2*x) - 1). - Stefano Spezia, Dec 10 2021

A081625 a(n) = 2*5^n - 3^n.

Original entry on oeis.org

1, 7, 41, 223, 1169, 6007, 30521, 154063, 774689, 3886567, 19472201, 97479103, 487749809, 2439811927, 12202248281, 61020807343, 305132734529, 1525749766087, 7629007110761, 38145810394783, 190731376496849
Offset: 0

Views

Author

Paul Barry, Mar 25 2003

Keywords

Comments

Binomial transform of A016516. Inverse binomial transform of A081626.
Row sums of the triangle of 2^n terms shown in A178590 appears to = A081625. - Gary W. Adamson, May 29 2010
Binomial transform of A006516: (1, 6, 28, 120, 496, ...). - Gary W. Adamson, May 31 2010

Crossrefs

Programs

  • Magma
    [2*5^n-3^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013
  • Mathematica
    CoefficientList[Series[(1 - x) / ((1 - 3 x) (1 - 5 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)
    LinearRecurrence[{8,-15},{1,7},30] (* Harvey P. Dale, Oct 14 2013 *)

Formula

a(n) = 8*a(n-1) - 15*a(n-2), a(0)=1, a(1)=7.
G.f.: (1-x)/((1-3*x)(1-5*x)).
E.g.f. 2*exp(5*x) - exp(3*x).
a(n) = Sum_{k=0..n} A125185(n,k)*3^k. - Philippe Deléham, Feb 26 2012

A081627 2*7^n-5^n.

Original entry on oeis.org

1, 9, 73, 561, 4177, 30489, 219673, 1568961, 11138977, 78754089, 555184873, 3905825361, 27438433777, 192557317689, 1350342630073, 9464605441761, 66313273248577, 464498088521289, 3253012498555273, 22778716884418161
Offset: 0

Views

Author

Paul Barry, Mar 25 2003

Keywords

Comments

Binomial transform of A081626.

Programs

  • Magma
    [2*7^n-5^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013
  • Mathematica
    CoefficientList[Series[(1 - 3 x) / ((1 - 5 x) (1 - 7 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)

Formula

G.f.: (1-3*x)/((1-5*x)*(1-7*x)).
E.g.f. 2*exp(7*x)-exp(5*x).
Showing 1-3 of 3 results.