A178590
a(2n) = 3*a(n), a(2n+1) = a(n) + a(n+1).
Original entry on oeis.org
1, 3, 4, 9, 7, 12, 13, 27, 16, 21, 19, 36, 25, 39, 40, 81, 43, 48, 37, 63, 40, 57, 55, 108, 61, 75, 64, 117, 79, 120, 121, 243, 124, 129, 91, 144, 85, 111, 100, 189, 103, 120, 97, 171, 112, 165, 163, 324, 169, 183, 136, 225, 139, 192, 181, 351, 196, 237, 199, 360, 241
Offset: 1
In groups of 2^n terms (n=0,1,2,...):
1;
3, 4;
9, 7, 12, 13;
27, 16, 21, 19, 36, 25, 39, 40;
...
a(6) = 12 = 3*a(3) = 3*4
a(7) = 13 = a(3) + a(4) = 4 + 9
-
a[0] = a[1] = 1; a[n_] := a[n] = If[ OddQ@n, a[(n - 1)/2] + a[(n + 1)/2], 3*a[n/2]]; Array[a, 61] (* Robert G. Wilson v, Jun 11 2010 *)
A171476
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1, a(0)=1, a(1)=6.
Original entry on oeis.org
1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528
Offset: 0
Cf.
A006516 (2^(n-1)*(2^n-1)),
A020522 (4^n-2^n),
A048473 (2*3^n-1),
A151821 (powers of 2, omitting 2 itself),
A010684 (repeat 1, 3),
A084633 (inverse binomial transform of repeated odd numbers),
A168589 ((2-3^n)*(-1)^n),
A081625 (2*5^n-3^n),
A081626 (2*6^n-4^n),
A081627 (2*7^n-5^n),
A010036 (sum of 2^n, ..., 2^(n+1)-1),
A006095 (Gaussian binomial coefficient [n, 2] for q=2),
A171472,
A171473.
-
[2*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011
-
LinearRecurrence[{6,-8},{1,6},30] (* Harvey P. Dale, Aug 02 2020 *)
-
m=23; v=concat([1, 6], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v
Original entry on oeis.org
1, 8, 56, 368, 2336, 14528, 89216, 543488, 3293696, 19893248, 119883776, 721399808, 4336787456, 26054279168, 156459892736, 939296227328, 5637924847616, 33836139020288, 203051193860096, 1218444602114048
Offset: 0
-
[2*6^n-4^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013
-
Table[2 6^n - 4^n, {n, 0, 20}] (* or *) LinearRecurrence[{10, -24}, {1, 8}, 20] (* Harvey P. Dale, Aug 19 2012 *)
CoefficientList[Series[(1 - 2 x) / ((1 - 4 x) (1 - 6 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)
-
a(n)=2*6^n-4^n \\ Charles R Greathouse IV, Oct 07 2015
A125185
Triangle read by rows: T(n,k) is the coefficient of t^k in the polynomial S(n,t)=[(1+t)(2+t)^n+(1-t)t^n]/2 (0<=k<=n).
Original entry on oeis.org
1, 1, 2, 2, 4, 3, 4, 10, 9, 4, 8, 24, 28, 16, 5, 16, 56, 80, 60, 25, 6, 32, 128, 216, 200, 110, 36, 7, 64, 288, 560, 616, 420, 182, 49, 8, 128, 640, 1408, 1792, 1456, 784, 280, 64, 9, 256, 1408, 3456, 4992, 4704, 3024, 1344, 408, 81, 10, 512, 3072, 8320, 13440, 14400
Offset: 0
Triangle starts:
1;
1,2;
2,4,3;
4,10,9,4;
8,24,28,16,5;
16,56,80,60,25,6;
Triangle (0,1,1,0,0,0,...) DELTA (1,1,-1,1,0,0,0,0,...) begins:
1
0, 1
0, 1, 2
0, 2, 4, 3
0, 4, 10, 9, 4
0, 8, 24, 28, 16, 5
0, 16, 56, 80, 60, 25, 6
- S. Klavzar, U. Milutinovic and C. Petr, Stern polynomials, Adv. Appl. Math. 39 (2007), 86-95.
A200864
Expansion of 1/((1+x)*(1-3*x)*(1-5*x)).
Original entry on oeis.org
1, 7, 42, 230, 1211, 6237, 31732, 160300, 806421, 4046867, 20278622, 101525970, 508028431, 2541337897, 12710276712, 63562145240, 317843011241, 1589311911327, 7946850122002, 39735122306110, 198678226618851, 993398978359157, 4967018427590492, 24835162745336580
Offset: 0
-
m:=24; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1+x)*(1-3*x)*(1-5*x))));
-
CoefficientList[Series[1/((1+x)(1-3x)(1-5x)), {x, 0, 24}], x]
LinearRecurrence[{7,-7,-15},{1,7,42},30] (* Harvey P. Dale, May 26 2015 *)
-
makelist(coeff(taylor(1/((1+x)*(1-3*x)*(1-5*x)), x, 0, n), x, n), n, 0, 23);
-
Vec(1/((1+x)*(1-3*x)*(1-5*x))+O(x^24))
Showing 1-5 of 5 results.
Comments