cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A246881 a(n)=A246880(n) where no k exists such that A246880(n)=A002277(k)*(2*10^(A081677(k-1))+3).

Original entry on oeis.org

609, 6660999, 666666609999999, 6666666660999999999, 66666666666666666099999999999999999, 666666666666666666666666609999999999999999999999999, 6666666666666666666666666660999999999999999999999999999
Offset: 1

Views

Author

Felix Fröhlich, Sep 06 2014

Keywords

Comments

For any n there exists a k such that A246880(n)=A002277(k-1)*A173041(k).

Crossrefs

Subsequence of A246880.

A173041 a(n) = 2*10^n + 3.

Original entry on oeis.org

5, 23, 203, 2003, 20003, 200003, 2000003, 20000003, 200000003, 2000000003, 20000000003, 200000000003, 2000000000003, 20000000000003, 200000000000003, 2000000000000003, 20000000000000003, 200000000000000003
Offset: 0

Views

Author

Vincenzo Librandi, Feb 08 2010

Keywords

Crossrefs

Cf. A081677 (numbers n such that 2*10^n + 3 is prime), A101951 (numbers n such that 20*10^n + 3 is prime). - Klaus Brockhaus, Feb 28 2010

Programs

  • Magma
    [2*10^n + 3: n in [0..20]]; // Vincenzo Librandi, Apr 05 2013
  • Mathematica
    CoefficientList[Series[(5 - 32 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 05 2013 *)
    Table[2*10^n+3,{n,0,20}] (* Harvey P. Dale, Jun 01 2019 *)

Formula

G.f.: (5-32*x)/((1-x)*(1-10*x)). - Vincenzo Librandi, Apr 05 2013

A101951 Indices of primes in sequence defined by A(0) = 23, A(n) = 10*A(n-1) - 27 for n > 0.

Original entry on oeis.org

0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119, 357, 1487, 1818, 4678, 9820, 27216, 27692, 194412
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004

Keywords

Comments

Numbers n such that 20*10^n + 3 is prime.
Numbers n such that digit 2 followed by n >= 0 occurrences of digit 0 followed by digit 3 is prime.
Numbers corresponding to terms <= 357 are certified primes.
a(21) > 10^5. - Robert Price, Nov 16 2014
a(22) > 2*10^5. - Robert Price, Jul 11 2015

Examples

			2003 is prime, hence 2 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(20*10^n+3)]; // Vincenzo Librandi, Nov 17 2014
  • Mathematica
    Select[Range[0, 1000], PrimeQ[(20 10^# + 3)] &] (* Vincenzo Librandi, Nov 17 2014 *)
  • PARI
    a=23;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
    
  • PARI
    for(n=0,1500,if(isprime(20*10^n+3),print1(n,",")))
    

Formula

a(n) = A081677(n+1) - 1. - Robert Price, Nov 16 2014

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(19)-a(20) derived from A081677 by Robert Price, Nov 16 2014
a(21) from Robert Price, Jul 11 2015

A101397 Numbers k such that 4*10^k+3 is prime.

Original entry on oeis.org

0, 1, 3, 7, 10, 40, 419, 449, 1737, 2245, 3131, 3813, 5345, 5659, 5681, 8410, 9097, 11293, 21061
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

See Kamada link for search limit and prime vs. PRP status.
a(20) > 2*10^5. - Robert Price, Jul 17 2015

Examples

			n = 1, 3, 7, 10 are members since 43, 4003, 40000003 and 40000000003 are prime numbers.
		

Crossrefs

Programs

Formula

a(n) = A101713(n-1) + 1.

Extensions

a(18)-a(19) from Kamada data by Robert Price, Dec 10 2010

A086865 Numbers n such that 2*10^n+11 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 19, 25, 39, 63, 133, 157, 274, 943, 1009, 1353, 7297, 16221, 25256, 30424, 52147
Offset: 1

Views

Author

Carl R. White, Aug 20 2003

Keywords

Comments

a(22) > 10^5. - Robert Price, Jan 10 2015

Crossrefs

Cf. A081677.

Programs

  • Mathematica
    Do[ If[ PrimeQ[2*10^n + 11], Print[n]], {n, 0, 4800}]
  • PARI
    is(n)=isprime(2*10^n+11) \\ Charles R Greathouse IV, Sep 27 2016

Extensions

Edited and extended by Robert G. Wilson v, Aug 25 2003
Term a(13) (had been listed as 254) corrected by Jon E. Schoenfield, Jul 13 2010
a(17)-a(21) from Robert Price, Jan 10 2015

A101392 Numbers k such that 2*10^k+9 is prime.

Original entry on oeis.org

0, 1, 5, 25, 455, 761, 9205, 13561, 15955, 26669, 113941
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

761 and 9205 only probably prime. No others less than 10000.
a(12) > 2*10^5. - Robert Price, Jun 06 2015

Examples

			n = 1, 5 are members since 29 and 200009 are primes.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[2*10^n + 9], Print[n]], {n, 0, 10000}]
  • PARI
    is(n)=ispseudoprime(2*10^n+9) \\ Charles R Greathouse IV, Jun 12 2017

Formula

a(n) = A101952(n-1) + 1 for n>1.

Extensions

a(8)-a(9) from Kamada link by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(10)-a(11) from Kamada data by Robert Price, Dec 13 2010
Prepended a(1)=0 by Robert Price, Jun 06 2015

A177134 Primes of the form 2*10^k + 3.

Original entry on oeis.org

5, 23, 2003, 200003, 2000003, 20000003, 2000000000003, 20000000000000003, 200000000000000003, 20000000000000000000003, 2000000000000000000000003, 200000000000000000000000000000000003
Offset: 1

Views

Author

Vincenzo Librandi, Dec 10 2010

Keywords

Crossrefs

Programs

  • Magma
    [ a: n in [0..250] | IsPrime(a) where a is 2*10^n + 3 ];

Formula

a(n) = A173041(A081677(n)).

A259541 Numbers n such that antisigma(n) is palindromic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 13, 23, 30, 31, 36, 109, 119, 158, 351, 1645, 1653, 2003, 3476, 3520, 3934, 4913, 8037, 9379, 35324, 36516, 91951, 128955, 200003, 390066, 402603, 1068869, 2000003, 2144992, 2467458, 2867828, 3392245, 3607663
Offset: 1

Views

Author

Paolo P. Lava, Jun 30 2015

Keywords

Comments

Primes of the form 2*10^k+3 belong the sequence (see A177134 and A081677).

Examples

			antisigma(1) = 1*2/2 - sigma(1) = 1 - 1 = 0;
antisigma(13) = 13*14/2 - sigma(13) = 91 - 14 = 77;
antisigma(109) = 109*110/2 - sigma(109) = 5995 - 110 = 5885.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
    for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
    od; y; end: P:=proc(q) local a,n;
    for n from 1 to q do a:=n*(n+1)/2-sigma(n); if a=T(a) then print(n);
    fi; od; end: P(10^9);
  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range@ 4000000, palQ[# (# + 1)/2 - DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 01 2015 *)
  • PARI
    isok(n) = my(d = digits(n*(n+1)/2 - sigma(n))); Vecrev(d)==d; \\ Michel Marcus, Jul 01 2015
Showing 1-8 of 8 results.