Original entry on oeis.org
609, 6660999, 666666609999999, 6666666660999999999, 66666666666666666099999999999999999, 666666666666666666666666609999999999999999999999999, 6666666666666666666666666660999999999999999999999999999
Offset: 1
A173041
a(n) = 2*10^n + 3.
Original entry on oeis.org
5, 23, 203, 2003, 20003, 200003, 2000003, 20000003, 200000003, 2000000003, 20000000003, 200000000003, 2000000000003, 20000000000003, 200000000000003, 2000000000000003, 20000000000000003, 200000000000000003
Offset: 0
-
[2*10^n + 3: n in [0..20]]; // Vincenzo Librandi, Apr 05 2013
-
CoefficientList[Series[(5 - 32 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 05 2013 *)
Table[2*10^n+3,{n,0,20}] (* Harvey P. Dale, Jun 01 2019 *)
A101951
Indices of primes in sequence defined by A(0) = 23, A(n) = 10*A(n-1) - 27 for n > 0.
Original entry on oeis.org
0, 2, 4, 5, 6, 11, 15, 16, 21, 23, 34, 114, 119, 357, 1487, 1818, 4678, 9820, 27216, 27692, 194412
Offset: 1
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004
2003 is prime, hence 2 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
[n: n in [0..500] | IsPrime(20*10^n+3)]; // Vincenzo Librandi, Nov 17 2014
-
Select[Range[0, 1000], PrimeQ[(20 10^# + 3)] &] (* Vincenzo Librandi, Nov 17 2014 *)
-
a=23;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-27)
-
for(n=0,1500,if(isprime(20*10^n+3),print1(n,",")))
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A101397
Numbers k such that 4*10^k+3 is prime.
Original entry on oeis.org
0, 1, 3, 7, 10, 40, 419, 449, 1737, 2245, 3131, 3813, 5345, 5659, 5681, 8410, 9097, 11293, 21061
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005
n = 1, 3, 7, 10 are members since 43, 4003, 40000003 and 40000000003 are prime numbers.
A086865
Numbers n such that 2*10^n+11 is prime.
Original entry on oeis.org
0, 1, 2, 3, 4, 9, 19, 25, 39, 63, 133, 157, 274, 943, 1009, 1353, 7297, 16221, 25256, 30424, 52147
Offset: 1
-
Do[ If[ PrimeQ[2*10^n + 11], Print[n]], {n, 0, 4800}]
-
is(n)=isprime(2*10^n+11) \\ Charles R Greathouse IV, Sep 27 2016
A101392
Numbers k such that 2*10^k+9 is prime.
Original entry on oeis.org
0, 1, 5, 25, 455, 761, 9205, 13561, 15955, 26669, 113941
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005
n = 1, 5 are members since 29 and 200009 are primes.
-
Do[ If[ PrimeQ[2*10^n + 9], Print[n]], {n, 0, 10000}]
-
is(n)=ispseudoprime(2*10^n+9) \\ Charles R Greathouse IV, Jun 12 2017
a(8)-a(9) from Kamada link by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A177134
Primes of the form 2*10^k + 3.
Original entry on oeis.org
5, 23, 2003, 200003, 2000003, 20000003, 2000000000003, 20000000000000003, 200000000000000003, 20000000000000000000003, 2000000000000000000000003, 200000000000000000000000000000000003
Offset: 1
A259541
Numbers n such that antisigma(n) is palindromic.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 13, 23, 30, 31, 36, 109, 119, 158, 351, 1645, 1653, 2003, 3476, 3520, 3934, 4913, 8037, 9379, 35324, 36516, 91951, 128955, 200003, 390066, 402603, 1068869, 2000003, 2144992, 2467458, 2867828, 3392245, 3607663
Offset: 1
antisigma(1) = 1*2/2 - sigma(1) = 1 - 1 = 0;
antisigma(13) = 13*14/2 - sigma(13) = 91 - 14 = 77;
antisigma(109) = 109*110/2 - sigma(109) = 5995 - 110 = 5885.
-
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
od; y; end: P:=proc(q) local a,n;
for n from 1 to q do a:=n*(n+1)/2-sigma(n); if a=T(a) then print(n);
fi; od; end: P(10^9);
-
palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range@ 4000000, palQ[# (# + 1)/2 - DivisorSigma[1, #]] &] (* Michael De Vlieger, Jul 01 2015 *)
-
isok(n) = my(d = digits(n*(n+1)/2 - sigma(n))); Vecrev(d)==d; \\ Michel Marcus, Jul 01 2015
Showing 1-8 of 8 results.
Comments