A081707 a(n) = tau(n) - bigomega(n) = A000005(n) - A001222(n).
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 8, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 7, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 8, 2, 2, 2, 4, 1, 8, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 5, 1, 4, 5
Offset: 1
Keywords
Examples
After first statement in comment section, a(60) = 8 because we have: 1,6,10,12,15,20,30,60. The divisors 2,3,4,5 are excluded from the count. - _Geoffrey Critzer_, Nov 22 2015
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
seq(numtheory:-tau(n)-numtheory:-bigomega(n), n=1..300); # Robert Israel, Nov 23 2015
-
Mathematica
Table[DivisorSigma[0, n] - PrimeOmega[n], {n, 1, 105}] (* Geoffrey Critzer, Nov 22 2015 *)
-
PARI
first(m)=vector(m,n,numdiv(n) - bigomega(n)) \\ Anders Hellström, Nov 22 2015
Comments