cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081714 a(n) = F(n)*L(n+1) where F=Fibonacci and L=Lucas numbers.

Original entry on oeis.org

0, 3, 4, 14, 33, 90, 232, 611, 1596, 4182, 10945, 28658, 75024, 196419, 514228, 1346270, 3524577, 9227466, 24157816, 63245987, 165580140, 433494438, 1134903169, 2971215074, 7778742048, 20365011075, 53316291172, 139583862446, 365435296161, 956722026042
Offset: 0

Views

Author

Ralf Stephan, Apr 03 2003

Keywords

Comments

Also convolution of Fibonacci and Lucas numbers.
For n>2, a(n) represents twice the area of the triangle created by the three points (L(n-3), L(n-2)), (L(n-1), L(n)) and (F(n+3), F(n+2)) where L(k)=A000032(k) and F(k)=A000045(k). - J. M. Bergot, May 20 2014
For n>1, a(n) is the remainder when F(n+3)*F(n+4) is divided by F(n+1)*F(n+2). - J. M. Bergot, May 24 2014

Crossrefs

Programs

  • GAP
    List([0..30], n -> Fibonacci(n)*(Fibonacci(n+2)+Fibonacci(n))); # G. C. Greubel, Jan 07 2019
  • Magma
    [Fibonacci(n)*Lucas(n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2012
    
  • Maple
    with(combinat): F:=n-> fibonacci(n): L:= n-> F(n+1)+F(n-1):
    a:= n-> F(n)*L(n+1): seq(a(n), n=0..30);
  • Mathematica
    Fibonacci[Range[0,50]]*LucasL[Range[0,50]+1] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
  • PARI
    my(x='x+O('x^51));for(n=0,50,print1(polcoeff(serconvol(Ser((1+2*x)/(1-x-x*x)),Ser(x/(1-x-x*x))),n)", "))
    
  • PARI
    a(n)=fibonacci(n)*(fibonacci(n+2)+fibonacci(n))
    
  • PARI
    a(n) = round((-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016
    
  • Sage
    [fibonacci(n)*(fibonacci(n+2)+fibonacci(n)) for n in (0..30)] # G. C. Greubel, Jan 07 2019
    

Formula

G.f.: x*(3-2*x)/((1+x)*(1-3*x+x^2)).
a(n) = A122367(n) - (-1)^n. - R. J. Mathar, Jul 23 2010
a(n) = (L(n+1)^2 - F(2*n+2))/2 = ( A001254(n+1) - A001906(n+1) )/2. - Gary Detlefs, Nov 28 2010
a(n+1) = - A186679(2*n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A035513(1,n-1)*A035513(2,n-1). - R. J. Mathar, Sep 04 2016
a(n)+a(n+1) = A005248(n+1). - R. J. Mathar, Sep 04 2016
a(n) = (-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016

Extensions

Simpler definition from Michael Somos, Mar 16 2004