A081714 a(n) = F(n)*L(n+1) where F=Fibonacci and L=Lucas numbers.
0, 3, 4, 14, 33, 90, 232, 611, 1596, 4182, 10945, 28658, 75024, 196419, 514228, 1346270, 3524577, 9227466, 24157816, 63245987, 165580140, 433494438, 1134903169, 2971215074, 7778742048, 20365011075, 53316291172, 139583862446, 365435296161, 956722026042
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Programs
-
GAP
List([0..30], n -> Fibonacci(n)*(Fibonacci(n+2)+Fibonacci(n))); # G. C. Greubel, Jan 07 2019
-
Magma
[Fibonacci(n)*Lucas(n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2012
-
Maple
with(combinat): F:=n-> fibonacci(n): L:= n-> F(n+1)+F(n-1): a:= n-> F(n)*L(n+1): seq(a(n), n=0..30);
-
Mathematica
Fibonacci[Range[0,50]]*LucasL[Range[0,50]+1] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
-
PARI
my(x='x+O('x^51));for(n=0,50,print1(polcoeff(serconvol(Ser((1+2*x)/(1-x-x*x)),Ser(x/(1-x-x*x))),n)", "))
-
PARI
a(n)=fibonacci(n)*(fibonacci(n+2)+fibonacci(n))
-
PARI
a(n) = round((-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016
-
Sage
[fibonacci(n)*(fibonacci(n+2)+fibonacci(n)) for n in (0..30)] # G. C. Greubel, Jan 07 2019
Formula
G.f.: x*(3-2*x)/((1+x)*(1-3*x+x^2)).
a(n) = A122367(n) - (-1)^n. - R. J. Mathar, Jul 23 2010
a(n+1) = - A186679(2*n+1). - Reinhard Zumkeller, Feb 25 2011
a(n)+a(n+1) = A005248(n+1). - R. J. Mathar, Sep 04 2016
a(n) = (-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016
Extensions
Simpler definition from Michael Somos, Mar 16 2004
Comments