cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A020884 Ordered short legs of primitive Pythagorean triangles.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 20, 21, 23, 24, 25, 27, 28, 28, 29, 31, 32, 33, 33, 35, 36, 36, 37, 39, 39, 40, 41, 43, 44, 44, 45, 47, 48, 48, 49, 51, 51, 52, 52, 53, 55, 56, 57, 57, 59, 60, 60, 60, 61, 63, 64, 65, 65, 67, 68, 68, 69, 69, 71, 72, 73, 75, 75, 76, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, (A, B) = 1, A <= B); sequence gives values of A, sorted.
Union of A081874 and A081925. - Lekraj Beedassy, Jul 28 2006
Each term in this sequence is given by f(m,n) = m^2 - n^2 or g(m,n) = 2mn where m and n are relatively prime positive integers with m > n, m and n not both odd. For example, a(1) = f(2,1) = 2^2 - 1^2 = 3 and a(4) = g(4,1) = 2*4*1 = 8. - Agola Kisira Odero, Apr 29 2016
All powers of 2 greater than 4 (2^2) are terms, and are generated by the function g(m,n) = 2mn. - Torlach Rush, Nov 08 2019

Crossrefs

Cf. A009004, A020882, A020883, A020885, A020886. Different from A024352.
Cf. A024359 (gives the number of times n occurs).
Cf. A037213.

Programs

  • Haskell
    a020884 n = a020884_list !! (n-1)
    a020884_list = f 1 1 where
       f u v | v > uu `div` 2        = f (u + 1) (u + 2)
             | gcd u v > 1 || w == 0 = f u (v + 2)
             | otherwise             = u : f u (v + 2)
             where uu = u ^ 2; w = a037213 (uu + v ^ 2)
    -- Reinhard Zumkeller, Nov 09 2012
  • Mathematica
    shortLegs = {}; amx = 99; Do[For[b = a + 1, b < (a^2/2), c = (a^2 + b^2)^(1/2); If[c == IntegerPart[c] && GCD[a, b, c] == 1, AppendTo[shortLegs, a]]; b = b + 2], {a, 3, amx}]; shortLegs (* Vladimir Joseph Stephan Orlovsky, Aug 07 2008 *)
    Take[Union[Sort/@({Times@@#,(Last[#]^2-First[#]^2)/2}&/@(Select[Subsets[Range[1,101,2],{2}],GCD@@#==1&]))][[;;,1]],80] (* Harvey P. Dale, Feb 06 2025 *)

Extensions

Extended and corrected by David W. Wilson

A120427 For each y >= 1 there are only finitely many values of x >= 1 such that x-y and x+y are both squares; list all such pairs (x,y) with gcd(x,y) = 1 ordered by values of y; sequence gives y values.

Original entry on oeis.org

4, 8, 12, 12, 16, 20, 20, 24, 24, 28, 28, 32, 36, 36, 40, 40, 44, 44, 48, 48, 52, 52, 56, 56, 60, 60, 60, 60, 64, 68, 68, 72, 72, 76, 76, 80, 80, 84, 84, 84, 84, 88, 88, 92, 92, 96, 96, 100, 100, 104, 104, 108, 108, 112, 112, 116, 116, 120, 120, 120, 120, 124, 124, 128
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2001

Keywords

Comments

Ordered even legs of primitive Pythagorean triangles.
I wrote an arithmetic program once to find out if and when y 'catches up to' n in A120427 (ordered even legs of primitive Pythagorean triples). It's around 16700. As enumerated by the even - or odd - legs, (not sure about the hypotenuses), the triples are 'denser' than the integers. - Stephen Waldman, Jun 12 2007
Conjecture: lim_{n->oo} a(n)/n = 1/Pi. - Lothar Selle, Jun 19 2022

Examples

			Pairs are [5, 4], [17, 8], [13, 12], [37, 12], [65, 16], [29, 20], [101, 20], ... E.g., 5-4 = 1^2, 5+4 = 3^2.
		

References

  • Lothar Selle, Kleines Handbuch Pythagoreische Zahlentripel, Books on Demand, 3rd impression 2022, chapter 2.3.1.
  • Donald D. Spencer, Computers in Number Theory, Computer Science Press, Rockville MD, 1982, pp. 130-131.

Crossrefs

Even entries of A024355. Ordered union of A081925 and A081935.

Formula

The solutions are given by x = r^2 + 2*r*k + 2*k^2, y = 2*k*(k+r) with r >= 1, k >= 1, r odd, gcd(r, k) = 1.
a(n) = 2*A020887(n) = 4*A020888(n).

Extensions

Corrected by Lekraj Beedassy, Jul 12 2007 and by Stephen Waldman (brogine(AT)gmail.com), Jun 09 2007

A112679 Even numbers which form exclusively the shortest side of primitive Pythagorean triangles.

Original entry on oeis.org

8, 16, 20, 28, 32, 36, 44, 48, 52, 64, 68, 76, 88, 92, 96, 100, 104, 108, 116, 124, 128, 136, 148, 152, 160, 164, 172, 184, 188, 192, 196, 200, 204, 212, 216, 228, 232, 236, 244, 248, 256, 268, 276, 280, 284, 292, 296, 300, 316, 320, 324, 328, 332, 336, 344
Offset: 1

Views

Author

Lekraj Beedassy, Dec 30 2005

Keywords

Comments

Numbers that are in A081925 (even short legs) but not in A081935 (even long legs).

Crossrefs

Extensions

Corrected and extended by Ray Chandler, Jan 02 2006
Showing 1-3 of 3 results.