A156678
Consider primitive Pythagorean triangles (A^2 + B^2 = C^2, gcd (A, B) = 1, A < BA020884(n)).
4, 12, 24, 15, 40, 60, 35, 84, 112, 63, 144, 180, 21, 99, 220, 264, 143, 312, 364, 45, 195, 420, 480, 255, 56, 544, 612, 77, 323, 684, 80, 760, 399, 840, 924, 117, 483, 1012, 1104, 55, 575, 1200, 140, 1300, 165, 675, 1404, 1512, 783, 176, 1624, 1740, 91, 221, 899
Offset: 1
Examples
As the first four primitive Pythagorean triples (ordered by increasing A) are (3,4,5), (5,12,13), (7,24,25) and (8,15,17), then a(1)=4, a(2)=12, a(3)=24 and a(4)=15.
References
- Beiler, Albert H.: Recreations In The Theory Of Numbers, Chapter XIV, The Eternal Triangle, Dover Publications Inc., New York, 1964, pp. 104-134.
- Sierpinski, W.; Pythagorean Triangles, Dover Publications, Inc., Mineola, New York, 2003.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Ron Knott, Right-angled Triangles and Pythagoras' Theorem
Programs
-
Haskell
a156678 n = a156678_list !! (n-1) a156678_list = f 1 1 where f u v | v > uu `div` 2 = f (u + 1) (u + 2) | gcd u v > 1 || w == 0 = f u (v + 2) | otherwise = v : f u (v + 2) where uu = u ^ 2; w = a037213 (uu + v ^ 2) -- Reinhard Zumkeller, Nov 09 2012
-
Mathematica
PrimitivePythagoreanTriplets[n_]:=Module[{t={{3,4,5}},i=4,j=5},While[i
Comments