cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A103210 a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*2^i*3^(n-i), a(0)=1.

Original entry on oeis.org

1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, 1541918901, 13503125805, 119352115551, 1063366539315, 9539785668657, 86104685123025, 781343125570515, 7124072211203775, 65233526296899981, 599633539433039445, 5531156299278726663
Offset: 0

Views

Author

Ralf Stephan, Jan 27 2005

Keywords

Comments

The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 28 2007
The Hankel transform of the sequence starting 1, 1, 3, 15, ... is A081955. - Paul Barry, Dec 09 2008
Number of Schroeder paths from (0,0) to (0,2n) allowing two colors for the down steps (or alternatively for the rise steps). - Paul Barry, Feb 01 2009
Essentially, reversion of x*(1-2*x)/(1+x). - Paul Barry, Apr 28 2009
a(n) is also the number of infix expressions with n variables and operators +, - and * (or +, * and /) such that there are no redundant parentheses. - Vjeran Crnjak, Apr 25 2020

Crossrefs

Third column of array A103209.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!((1-x-Sqrt(x^2-10*x+1))/(4*x))); // G. C. Greubel, Feb 10 2018
    
  • Maple
    A103210 := proc(n)
        if n = 0 then
            1;
        else
            add(binomial(n,i)*binomial(n,i+1)*2^i*3^(n-i),i=0..n-1)/n ;
        end if;
    end proc: # R. J. Mathar, Feb 10 2015
    A103210_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 3*a[w-1] + 2*add(a[j]*a[w-j-1], j=1..w-1) od;
    convert(a, list) end: A103210_list(21); # Peter Luschny, Feb 29 2016
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-10*x+1])/(4*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
    A103210[n_]:= Hypergeometric2F1[-n, n+1, 2, -2]; Table[A103210[n], {n, 0, 25}] (* Peter Luschny, Jan 07 2018 *)
  • PARI
    my(x='x+O('x^25)); Vec((1-x-sqrt(x^2-10*x+1))/(4*x)) \\ G. C. Greubel, Feb 10 2018
    
  • Sage
    [1]+[(3^n/n)*sum( binomial(n,j)*binomial(n,j+1)*(2/3)^j for j in (0..n-1)) for n in (1..25)] # G. C. Greubel, Jun 08 2020

Formula

G.f.: (1 - z - sqrt(1 -10*z +z^2))/(4*z).
a(n) = Sum_{k=0..n} C(n+k, 2k) * 2^k * C(k), C(n) given by A000108. - Paul Barry, May 21 2005
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k). - Philippe Deléham, Apr 02 2007
a(0) = 1, a(n) = a(n-1) + 2*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
a(n) = (3/2)*A107841(n) for n > 0. - Philippe Deléham, Oct 28 2007
G.f.: 1/(1-x-2*x/(1-x-2*x/(1-x-2*x/(1-.... (continued fraction). - Paul Barry, Feb 01 2009
G.f.: 1/(1-3*x-6*x^2/(1-5*x-6*x^2/(1-5*x-6*x^2/(1-... (continued fraction). - Paul Barry, Apr 28 2009
G.f.: 1/(1-3*x/(1-2*x/(1-3*x/(1-2*x/(1-3*x/(1-... (continued fraction). - Paul Barry, May 14 2009
a(n) = Hypergeometric2F1(-n,n+1;2;-2) = Sum_{k=0..n} C(n+k,k) * C(n,k) * 2^k/(k+1). - Paul Barry, Feb 08 2011
G.f.: A(x) = (1-x-(x^2-10*x+1)^(1/2))/(4*x) = 1/(G(0)-x); G(k)= 1 + x - 3*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
D-finite with recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(12+5*sqrt(6))*(5+2*sqrt(6))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f. A(x) satisfies: A(x) = (1 + 2*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A081954 Triangle read by rows: T(n, k) = 2^(n-k)*3^k, n >= 1, 0 <= k < n.

Original entry on oeis.org

2, 4, 6, 8, 12, 18, 16, 24, 36, 54, 32, 48, 72, 108, 162, 64, 96, 144, 216, 324, 486, 128, 192, 288, 432, 648, 972, 1458, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 1024, 1536, 2304, 3456, 5184, 7776
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2003

Keywords

Examples

			Triangle begins:
2
4 6
8 12 18
16 24 36 54
32 48 72 108 162
...
		

Crossrefs

Leading diagonal is given by A025192.

Programs

  • PARI
    tabl(nrows) = {for (n=1, nrows, for (k=0, n-1, print1(2^(n-k)*3^k, ", ");); print(););} \\ Michel Marcus, May 14 2013

Extensions

Corrected and extended by David Wasserman, Jul 21 2004

A171739 a(n) = 2^(n*(n-1)/2)*3^(n*(n+1)/2).

Original entry on oeis.org

1, 3, 54, 5832, 3779136, 14693280768, 342764853755904, 47976111050506371072, 40290721869103654477234176, 203018823308689211155302473269248, 6137885950748052085508841340966822477824, 1113403476497577147178633950236927694314586243072
Offset: 0

Views

Author

Michael Somos, Dec 17 2009

Keywords

Examples

			1 + 3*x + 54*x^2 + 5832*x^3 + 3779136*x^4 + 14693280768*x^5 + 342764853755904*x^6 + ...
		

Crossrefs

Cf. A081955.

Programs

  • Maple
    A171739:=n->2^(n*(n-1)/2)*3^(n*(n+1)/2): seq(A171739(n), n=0..15); # Wesley Ivan Hurt, Feb 12 2017
  • Mathematica
    Table[2^(n*(n-1)/2) * 3^(n*(n+1)/2), {n, 0, 20}] (* Vincenzo Librandi, Jan 03 2013 *)
  • PARI
    {a(n) = 2^(n*(n-1)/2) * 3^(n*(n+1)/2)}

Formula

a(-n) = A081955(n).
a(n+1)*a(n-1) = 6*a(n)^2.
G.f.: 1 / (1 - 6^1 / 2 * x / (1 - (6^1 - 1) * 6^1 / 2 * x / (1 - 6^2 / 2 * x / (1 - (6^2 - 1) * 6^2 / 2 * x / ... )))). - Michael Somos, Jan 03 2013
Showing 1-3 of 3 results.