A082298 Expansion of (1-3*x-sqrt(9*x^2-10*x+1))/(2*x).
1, 4, 20, 116, 740, 5028, 35700, 261780, 1967300, 15072836, 117297620, 924612532, 7367204260, 59240277988, 480118631220, 3917880562644, 32163325863300, 265446382860420, 2201136740855700, 18329850024033012, 153225552507991140
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry and Aoife Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- Zhi Chen and Hao Pan, Identities involving weighted Catalan, Schroder and Motzkin paths, arXiv:1608.02448 [math.CO], 2016. See eq. (1.13), a=4, b=1.
- Curtis Coker, Enumerating a class of lattice paths, Disc. Math. (2003) Vol. 271, Issues 1-3, 13-28.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- John Machacek, Lattice walks ending on a coordinate hyperplane avoiding backtracking and repeats, arXiv:2105.02417 [math.CO], 2021. See Thm 4.4, G(x,F^1)
- Greg Morrow, Some probability distributions and integer sequences related to rook paths, Univ. Colorado Springs (2024). See pp. 4, 22
Programs
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q, 40); Coefficients(R!((1-3*x-Sqrt(9*x^2-10*x+1))/(2*x))); // G. C. Greubel, Feb 10 2018 -
Maple
A082298_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1; for w from 1 to n do a[w] := 4*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od;convert(a,list)end: A082298_list(20); # Peter Luschny, May 19 2011 a := n -> `if`(n=0, 1, 4*hypergeom([1 - n, -n], [2], 4)): seq(simplify(a(n)), n=0..20); # Peter Luschny, May 22 2017
-
Mathematica
gf[x_] = (1 - 3*x - Sqrt[(9*x^2 - 10*x + 1)])/(2*x); CoefficientList[Series[gf[x], {x, 0, 20}], x] (* Jean-François Alcover, Jun 01 2011 *)
-
PARI
a(n)=if(n<1,1,sum(k=0,n,4^k*binomial(n,k)*binomial(n,k-1))/n)
Formula
a(0)=1, n>0 a(n) = (1/n)*Sum_{k=0..n} 4^k*binomial(n, k)*binomial(n, k-1).
a(1)=1, a(n) = 3*a(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} 1/(n+1) Binomial(n+1,k)Binomial(2n-k,n-k)3^k. - David Callan, Jun 07 2006
From Paul Barry, Feb 01 2009: (Start)
G.f.: 1/(1-3x-x/(1-3x-x/(1-3x-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} binomial(n+k,2k)*3^(n-k)*A000108(k). (End)
a(n) = Sum_{k=0..n} A060693(n,k)*3^k. - Philippe Deléham, Feb 11 2009
D-finite with recurrence: (n+1)*a(n) = 5*(2n-1)*a(n-1)-9*(n-2)*a(n-2). - Paul Barry, Oct 22 2009
G.f.: 1/(1- 4x/(1-x/(1-4x/(1-x/(1-4x/(1-... (continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
G.f.: (1-3*x-sqrt(9*x^2-10*x+1))/(2*x) = (1-G(0))/x; G(k) = 1+x*3-x*4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ 3^(2*n+1)/(sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 4*hypergeom([1 - n, -n], [2], 4) for n>0. - Peter Luschny, May 22 2017
G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - 3*x). - Ilya Gutkovskiy, Jun 30 2020
G.f.: (1+2*x*F(x))^2, where F(x) is the g.f. for A099250. - Alexander Burstein, May 11 2021
Comments