A103333
Number of closed walks on the graph of the (7,4) Hamming code.
Original entry on oeis.org
1, 3, 24, 192, 1536, 12288, 98304, 786432, 6291456, 50331648, 402653184, 3221225472, 25769803776, 206158430208, 1649267441664, 13194139533312, 105553116266496, 844424930131968, 6755399441055744, 54043195528445952, 432345564227567616
Offset: 0
- David J.C. Mackay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 19
Original entry on oeis.org
1, 5, 33, 229, 1601, 11205, 78433, 549029, 3843201, 26902405, 188316833, 1318217829, 9227524801, 64592673605, 452148715233, 3165041006629, 22155287046401, 155087009324805, 1085609065273633, 7599263456915429, 53194844198408001
Offset: 0
A082413
a(n) = (2*9^n + 3^n)/3.
Original entry on oeis.org
1, 7, 57, 495, 4401, 39447, 354537, 3189375, 28700001, 258286887, 2324542617, 20920765455, 188286534801, 1694577750327, 15251196564297, 137260759512735, 1235346806916801, 11118121176157767, 100063090327139577, 900567812169415215
Offset: 0
A103334
Number of closed walks of length 2n at any of the nodes of degree 1 on the graph of the (7,4) Hamming code.
Original entry on oeis.org
1, 1, 4, 24, 176, 1376, 10944, 87424, 699136, 5592576, 44739584, 357914624, 2863312896, 22906494976, 183251943424, 1466015514624, 11728124051456, 93824992280576, 750599937982464, 6004799503335424, 48038396025634816
Offset: 0
- David J.C. Mackay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 19.
A082414
a(n) = (2*10^n + 4^n)/3.
Original entry on oeis.org
1, 8, 72, 688, 6752, 67008, 668032, 6672128, 66688512, 666754048, 6667016192, 66668064768, 666672259072, 6666689036288, 66666756145152, 666667024580608, 6666668098322432, 66666672393289728, 666666689573158912, 6666666758292635648
Offset: 0
A083217
a(n) = (2*5^n + (-1)^n)/3.
Original entry on oeis.org
1, 3, 17, 83, 417, 2083, 10417, 52083, 260417, 1302083, 6510417, 32552083, 162760417, 813802083, 4069010417, 20345052083, 101725260417, 508626302083, 2543131510417, 12715657552083, 63578287760417, 317891438802083
Offset: 0
-
[(2*5^n +(-1)^n)/3: n in [0..40]]; // G. C. Greubel, Feb 17 2023
-
LinearRecurrence[{4,5},{1,3},30] (* Harvey P. Dale, Sep 18 2018 *)
-
from sage.combinat.sloane_functions import recur_gen2b
it = recur_gen2b(1,3,4,5, lambda n: 0)
[next(it) for i in range(1,24)] # Zerinvary Lajos, Jul 03 2008
A083333
a(n) = 10*a(n-2) - 16*a(n-4) for n>=4, with a(0)=a(1)=1, a(2)=6, a(3)=10.
Original entry on oeis.org
1, 1, 6, 10, 44, 84, 344, 680, 2736, 5456, 21856, 43680, 174784, 349504, 1398144, 2796160, 11184896, 22369536, 89478656, 178956800, 715828224, 1431655424, 5726623744, 11453245440, 45812985856, 91625967616, 366503878656
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
-
I:=[1,1,6,10]; [n le 4 select I[n] else 10*Self(n-2) -16*Self(n-4): n in [1..41]]; // G. C. Greubel, Dec 27 2024
-
CoefficientList[Series[(1+x-4x^2)/(1-10x^2+16x^4), {x, 0, 30}], x]
LinearRecurrence[{0,10,0,-16},{1,1,6,10},30] (* Harvey P. Dale, Aug 04 2024 *)
-
def A083333(n): return 2^((n-1)/2)*( (n%2)*(2^(n+1) -1) + ((n+1)%2)*sqrt(2)*(2^(n+1) +1))/3
print([A083333(n) for n in range(41)]) # G. C. Greubel, Dec 27 2024
Showing 1-7 of 7 results.
Comments