Original entry on oeis.org
1, 5, 29, 173, 1037, 6221, 37325, 223949, 1343693, 8062157, 48372941, 290237645, 1741425869, 10448555213, 62691331277, 376147987661, 2256887925965, 13541327555789, 81247965334733, 487487792008397, 2924926752050381
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 [math.CO], 2014, eq (43).
- Index entries for linear recurrences with constant coefficients, signature (7,-6).
-
[(4*6^n+1)/5: n in [0..30]]; // Vincenzo Librandi, Nov 06 2011
-
f[n_]:=6^n; lst={}; Do[a=f[n]; Do[a-=f[m],{m,n-1,1,-1}]; AppendTo[lst,a/6],{n,1,30}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)
A083064
Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0
Rows begin:
1 1 1 1 1 1 1 1 1 ...
1 2 5 14 41 122 365 1094 3281 ... A007051
1 3 11 43 171 683 2731 10923 43691 ... A007583
1 4 19 94 469 2344 11719 58594 292969 ... A083065
1 5 29 173 1037 6221 37325 223949 1343693 ... A083066
1 6 41 286 2001 14006 98041 686286 4804001 ... A083067
1 7 55 439 3511 28087 224695 1797559 14380471 ... A083068
1 8 71 638 5741 51668 465011 4185098 37665881 ... A187709
1 9 89 889 8889 88889 888889 8888889 88888889 ... A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ... A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1, 2, 11, 94, 1037, 14006, ... A083069;
1, 3, 19, 173, 2001, 28087, ... A083071;
1, 4, 29, 286, 3511, 51668, ... A083072;
1, 5, 41, 439, 5741, 88889, ... A083073;
1, 5, 43, 469, 6221, 98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
Cf. rows:
A007051,
A007583,
A059482,
A083065 -
A083068,
A187709,
A199760; columns:
A000027,
A028387,
A083074,
A125082,
A125083; diagonals:
A083069 -
A083073,
A191690.
Original entry on oeis.org
1, 7, 55, 439, 3511, 28087, 224695, 1797559, 14380471, 115043767, 920350135, 7362801079, 58902408631, 471219269047, 3769754152375, 30158033218999, 241264265751991, 1930114126015927, 15440913008127415, 123527304065019319, 988218432520154551, 7905747460161236407
Offset: 0
-
f[n_]:=8^n; lst={}; Do[a=f[n]; Do[a-=f[m],{m,n-1,1,-1}]; AppendTo[lst,a/8],{n,1,30}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)
LinearRecurrence[{9,-8},{1,7},20] (* Harvey P. Dale, Jul 18 2019 *)
-
a(n)=(6*8^n+1)/7 \\ Charles R Greathouse IV, Oct 07 2015
Original entry on oeis.org
6, 36, 246, 1716, 12006, 84036, 588246, 4117716, 28824006, 201768036, 1412376246, 9886633716, 69206436006, 484445052036, 3391115364246, 23737807549716, 166164652848006, 1163152569936036, 8142067989552246, 56994475926865716
Offset: 0
-
[5*7^n+1: n in [0..30]];
-
5*7^Range[0,20]+1 (* or *) LinearRecurrence[{8,-7},{6,36},20] (* Harvey P. Dale, Dec 23 2012 *)
Showing 1-4 of 4 results.
Comments