A083117
Smallest k such that k*n contains a single digit with multiplicity, or 0 if no such number exists.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 37, 8547, 15873, 37, 0, 65359477124183, 37, 5847953216374269, 0, 37, 1, 48309178743961352657, 37, 0, 8547, 37, 15873, 38314176245210727969348659, 0, 3584229390681, 0, 1, 65359477124183
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 23 2003
- Amarnath Murthy, "On the divisors of the Smarandache Unary sequence," Smarandache Notions Journal, Volume 11, 1-2-3, Spring 2000.
-
from itertools import count
def A083117(n):
if not (n%10 and n%16 and n%25): return 0
for l in count(1):
k = (10**l-1)//9
for a in range(1,10):
b, c = divmod(a*k,n)
if not c:
return b # Chai Wah Wu, Jan 23 2024
A083116
Smallest multiple of n using a single digit with multiplicity, or 0 if no such number exists.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 444, 111111, 222222, 555, 0, 1111111111111111, 666, 111111111111111111, 0, 777, 22, 1111111111111111111111, 888, 0, 222222, 999, 444444, 1111111111111111111111111111, 0, 111111111111111, 0, 33, 2222222222222222, 555555
Offset: 1
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Apr 23 2003
- Amarnath Murthy, "On the divisors of the Smarandache Unary sequence," Smarandache Notions Journal, Volume 11, 1-2-3, Spring 2000.
A305322
Repdigit numbers that are divisible by 3.
Original entry on oeis.org
0, 3, 6, 9, 33, 66, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 3333, 6666, 9999, 33333, 66666, 99999, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 111111111, 222222222
Offset: 1
111 / 3 = 37;
222 / 3 = 74;
333 / 3 = 111;
444 / 3 = 148;
555 / 3 = 185.
- Robert Israel, Table of n, a(n) for n = 1..4996
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000).
-
L:= proc(d) if d mod 3 = 0 then [$1..9] else [3,6,9] fi end proc:
0,seq(seq((10^d-1)/9*k,k=L(d)),d=1..9); # Robert Israel, Jun 01 2018
-
def A010785(n): return (n - 9*((n-1)//9))*(10**((n+8)//9) - 1)//9
def A305322(n):
d0, d1 = divmod(n-1,15)
if d1 < 7: return A010785(d0 * 27 + d1 * 3)
return A010785(d0 * 27 + d1 + 12) # Karl-Heinz Hofmann, Nov 26 2023
A366596
Repdigit numbers that are divisible by 7.
Original entry on oeis.org
0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..2329
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1000001,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000000).
-
r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
-
def A366596(n):
digitlen, digit = (n+12)//14*6, (n+12)%14-4
if digit < 1: digitlen += digit - 1; digit = 7
return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023
A365933
a(n) is the period of the remainders when repdigits are divided by n.
Original entry on oeis.org
1, 9, 27, 9, 9, 27, 54, 9, 81, 9, 18, 27, 54, 54, 27, 9, 144, 81, 162, 9, 54, 18, 198, 27, 9, 54, 243, 54, 252, 27, 135, 9, 54, 144, 54, 81, 27, 162, 54, 9, 45, 54, 189, 18, 81, 198, 414, 27, 378, 9, 432, 54, 117, 243, 18, 54, 162, 252, 522, 27, 540, 135, 162, 9, 54
Offset: 1
For n = 6: Remainders of A010785(1..54) mod n.
A010785( 1...9) mod n: [1, 2, 3, 4, 5, 0, 1, 2, 3]
A010785(10..18) mod n: [5, 4, 3, 2, 1, 0, 5, 4, 3]
A010785(19..27) mod n: [3, 0, 3, 0, 3, 0, 3, 0, 3]
So the period is 3*9 = 27. Thus a(n) = 27. And the pattern seen above starts again:
A010785(28..36) mod n: [1, 2, 3, 4, 5, 0, 1, 2, 3]
A010785(37..45) mod n: [5, 4, 3, 2, 1, 0, 5, 4, 3]
A010785(46..54) mod n: [3, 0, 3, 0, 3, 0, 3, 0, 3]
Cf.
A083118 (the impossible divisors).
-
def A365933(n):
if n == 1: return 1
remainders, exponent = [], 1
while (rem:=(10**exponent // 9 % n)) not in remainders:
remainders.append(rem); exponent += 1
return (exponent - remainders.index(rem) - 1) * 9
-
def A365933(n):
if n==1: return 1
a,b,x,y=1,1,1%n,11%n
while x!=y:
if a==b:
a<<=1
x,b=y,0
y = (10*y+1)%n
b+=1
return 9*b # Chai Wah Wu, Jan 23 2024
Showing 1-5 of 5 results.
Comments