cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A090307 a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.

Original entry on oeis.org

2, 18, 326, 5886, 106274, 1918818, 34644998, 625528782, 11294163074, 203920464114, 3681862517126, 66477445772382, 1200275886420002, 21671443401332418, 391286257110403526, 7064824071388595886
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.0553851... = 1/(9+sqrt(82)) = (sqrt(82)-9).
Lim_{n-> infinity} a(n+1)/a(n) = 18.0553851... = (9+sqrt(82)) = 1/(sqrt(82)-9).

Examples

			a(4) = 18*a(3) + a(2) = 18*5886 + 326 = (9+sqrt(82))^4 + (9-sqrt(82))^4 = 106273.9999905903 + 0.000009406 = 106274.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), this sequence (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=18;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=18; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 9*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{18,1},{2,18},25] (* or *) CoefficientList[ Series[ (2-18x)/(1-18x-x^2),{x,0,25}],x] (* Harvey P. Dale, Apr 22 2011 *)
    LucasL[Range[20]-1, 18] (* G. C. Greubel, Dec 30 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 9*I) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 9*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.
a(n) = (9+sqrt(82))^n + (9-sqrt(82))^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5, ...
(a(n))^2 = a(2n) + 2 if n=2, 4, 6, ...
G.f.: (2-18*x)/(1-18*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 18) = 2*(-i)^n * ChebyshevT(n, 9*i). - G. C. Greubel, Dec 30 2019
E.g.f.: 2*exp(9*x)*cosh(sqrt(82)*x). - Stefano Spezia, Dec 31 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A057237 Maximum k <= n such that 1, 2, ..., k are all relatively prime to n.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 2, 1, 16, 1, 18, 1, 2, 1, 22, 1, 4, 1, 2, 1, 28, 1, 30, 1, 2, 1, 4, 1, 36, 1, 2, 1, 40, 1, 42, 1, 2, 1, 46, 1, 6, 1, 2, 1, 52, 1, 4, 1, 2, 1, 58, 1, 60, 1, 2, 1, 4, 1, 66, 1, 2, 1, 70, 1, 72, 1, 2, 1, 6, 1, 78, 1, 2, 1, 82, 1, 4, 1, 2, 1, 88, 1, 6, 1, 2, 1
Offset: 1

Views

Author

Leroy Quet, Sep 20 2000

Keywords

Comments

In reduced residue system for n [=RRS(n)] the [initial] segment of consecutive integers, i.e. of which no number is missing is {1,2,....,a[n]}. The first missing term from RRS(n) is 1+a(n), the least prime divisor.. E.g. n=121 : RRS[121] = {1,2,3,4,5,6,7,8,9,10,lag,12,..}, i.e. no 11 is in RRS; a[n] is the length of longest lag-free number segment consisting of consecutive integers, since A020639[n] divides n. - Labos Elemer, May 14 2003
a(n) is also the difference between the smallest two divisors of n, (the column 1 of A193829), if n >= 2. - Omar E. Pol, Aug 31 2011

Examples

			a(25) = 4 because 1, 2, 3 and 4 are relatively prime to 25.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Length[Split[Boole[CoprimeQ[n,Range[n-1]]]][[1]]],{n,2,100}]] (* Harvey P. Dale, Dec 28 2021 *)
  • PARI
    a(n) = if (n==1, 1, factor(n)[1,1] - 1); \\ Michel Marcus, May 29 2015

Formula

For n >= 2, a(n) = (smallest prime dividing n) - 1 = A020639(n) - 1.
For n >= 2, a(n) = (n-1) mod (smallest prime dividing n); cf. A083218. - Reinhard Zumkeller, Apr 22 2003
Showing 1-2 of 2 results.