cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A083313 a(0)=1; a(n) = 3^n - 2^(n-1) for n >= 1.

Original entry on oeis.org

1, 2, 7, 23, 73, 227, 697, 2123, 6433, 19427, 58537, 176123, 529393, 1590227, 4774777, 14332523, 43013953, 129074627, 387289417, 1161999323, 3486260113, 10459304627, 31378962457, 94138984523, 282421147873, 847271832227, 2541832273897, 7625530376123
Offset: 0

Views

Author

Paul Barry, Apr 24 2003

Keywords

Comments

Essentially the same as A064686.
Binomial transform of A051049.
Number of skinny Boolean functions f(x_1,...,x_n) that are also Horn functions. - Hugo Pfoertner, Mar 04 2019

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, fascicle 1, section 7.1.4, pp. 134, 138, 139, 219, answer to exercise 172, Addison-Wesley, 2009.

Crossrefs

Cf. A083314.

Programs

  • Magma
    [(2*3^n-2^n+0^n)/2: n in [0..30]]; // Vincenzo Librandi, Feb 01 2015
  • Maple
    A083313 := proc(n)
        if n = 0 then
            1;
        else
            3^n-2^(n-1) ;
        end if;
    end proc: # R. J. Mathar, Aug 01 2013
  • Mathematica
    CoefficientList[Series[((1 - x) + (1 - 2 x) (1 - 3 x)) / (2 (1 - 2 x) (1 - 3 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 01 2015 *)
    LinearRecurrence[{5,-6},{1,2,7},30] (* Harvey P. Dale, Sep 04 2017 *)
  • PARI
    Vec(((1-x)+(1-2*x)*(1-3*x))/(2*(1-2*x)*(1-3*x)) + O(x^30)) \\ Michel Marcus, Jan 31 2015
    
  • PARI
    print1(1,", ",s=2,", " );for(k=2,27,s=2^(k-2)+3*s;print1(s,", ")) \\ Hugo Pfoertner, Mar 04 2019
    

Formula

a(n) = (2*3^n - (2^n - 0^n))/2.
a(0) = 1, a(n) = 3^n - 2^(n-1) for n >= 1.
G.f.: ((1-x) + (1-2*x)*(1-3*x))/(2*(1-2*x)*(1-3*x)).
E.g.f.: (2*exp(3*x) - exp(2*x) + exp(0))/2.
a(n) = A090888(n-1, 4), for n > 0. - Ross La Haye, Sep 21 2004
Let b(n) = 2*(3/2)^n - 1. Then A003063(n) = -b(1-n)*3^(n-1) for n > 0. a(n) = A064686(n) = b(n)*2^(n-1) for n > 0. - Michael Somos, Aug 06 2006
From Alex Ratushnyak, Jul 03 2012: (Start)
a(n) mod 100 = 23 for n = 4*k-1, k >= 1.
a(n) mod 100 = 27 for n = 4*k+1, k >= 1.
(End)

Extensions

Better name by Alex Ratushnyak, Jul 02 2012