A083374 a(n) = n^2 * (n^2 - 1)/2.
0, 6, 36, 120, 300, 630, 1176, 2016, 3240, 4950, 7260, 10296, 14196, 19110, 25200, 32640, 41616, 52326, 64980, 79800, 97020, 116886, 139656, 165600, 195000, 228150, 265356, 306936, 353220, 404550, 461280, 523776, 592416, 667590, 749700, 839160, 936396
Offset: 1
References
- Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 106, table 55.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Somaya Barati, Beáta Bényi, Abbas Jafarzadeh and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n^2*(n^2-1)/2: n in [1..40]]; // Vincenzo Librandi, Sep 14 2011
-
Magma
A000217:=func; [&+[k*A000217(2*k+1): k in [0..n-1]]: n in [1..40]]; // Bruno Berselli, Sep 04 2013
-
Maple
A083374 := proc(n) n^2*(n^2-1)/2 ; end proc: # R. J. Mathar, Aug 23 2011
-
Mathematica
Table[n^2*(n^2-1)/2, {n,40}] (* T. D. Noe, Oct 25 2006 *)
-
PARI
a(n)=binomial(n^2,2) \\ Charles R Greathouse IV, Aug 23 2011
Formula
a(n) = (n + 1) * A006002(n).
a(n) = A047928(n)/2 = A002415(n+1)*6 = A006011(n+1)*2 = A008911(n+1)*3. - Zerinvary Lajos, May 09 2007
a(n) = binomial(n^2,2), n>=1. - Zerinvary Lajos, Jan 07 2008
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5. - R. J. Mathar, Apr 10 2009
G.f.: -6*x^2*(1+x)/(x-1)^5. - R. J. Mathar, Apr 10 2009
Sum_{n>1} 1/a(n) = (21 - 2*Pi^2)/6. - Enrique Pérez Herrero, Apr 01 2013
a(n) = Sum_{k=0..n-1} k*A000217(2*k+1). - Bruno Berselli, Sep 04 2013
a(n) = Sum_{i=1..n^2-1} i. - Wesley Ivan Hurt, Nov 24 2015
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/2. - Stefano Spezia, Jun 06 2021
Sum_{n>=2} (-1)^n/a(n) = Pi^2/6 - 3/2. - Amiram Eldar, Nov 02 2021
Extensions
Corrected and extended by T. D. Noe, Oct 25 2006
Comments