cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A084954 Initial prime of a prime chain of length n under the iteration x->2x+3.

Original entry on oeis.org

2, 2, 2, 2, 47, 47, 6047, 477727, 30596497, 3388516667, 340746580567, 1763093883977, 773521306107547, 1142275515892937, 391230854658184967
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
Is it smallest initial prime of a prime chain of length n under the iteration x->2x+3, or not? At least up to 3388516667 it is the smallest one. - Zak Seidov, Dec 20 2013

Examples

			a(3) = 2 since 2, 2*2+3=7 and 2*7+3=17 are primes.
		

Crossrefs

Extensions

More terms from Don Reble, Nov 07 2007
a(15) from Bert Dobbelaere, Jun 01 2025

A084960 Initial prime of a prime chain of length n under the iteration x->5x+4.

Original entry on oeis.org

2, 3, 5, 83, 263, 5333, 5333, 6714497, 42360737, 3757699889, 3757699889, 1431898413161, 5654774136689, 12756824771254199, 184574272412533499
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 5 since 5, f(5) = 29 and f(29) = 149 are primes when f(x) = 5x+4.
		

Crossrefs

Programs

  • Mathematica
    t[p_] := Block[{c=1, q = 5*p+4}, While[ PrimeQ@q, q = 5*q + 4; c++]; c]; a[n_] := Block[{p = 2}, While[t[p] < n, p = NextPrime@ p]; p]; Array[a, 8] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(9) from Stefan Steinerberger, May 18 2007
a(10)-a(11) from Donovan Johnson, Sep 27 2008
a(12)-a(13) from Giovanni Resta, Mar 21 2017
a(14)-a(15) from Bert Dobbelaere, May 30 2025

A084958 Initial prime of a prime chain of length n under the iteration x->5x+2.

Original entry on oeis.org

2, 3, 13, 19, 373, 135859, 135859, 18235423, 26588257, 93112729, 376038903103, 7087694466289, 120223669028389
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3)=13 since 13, f(13)=67 and f(67)=337 are primes when f(x) = 5x+2.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k = 1, q = 5*p+2}, While[ PrimeQ[q], q = 5*q+2; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 7] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 20 2017
a(13) from Giovanni Resta, Mar 21 2017

A084956 Initial prime of the first prime chain of length n under the iteration x -> 3x+4.

Original entry on oeis.org

2, 3, 3, 23, 3203, 34613, 165443, 1274803, 26314573, 26314573, 590256673403, 15113026057043, 334156170011893, 3998669569752373
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3) = 3 since 3, f(3) = 13 and f(13) = 43 are primes when f(x) = 3*x + 4.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=3*p + 4}, While[PrimeQ[q], q=3*q+4; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(9)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 13 2017
a(13)-a(14) from Giovanni Resta, Mar 22 2017

A084957 Initial prime of the first prime chain of length n under the iteration x -> 4x + 3.

Original entry on oeis.org

2, 2, 2, 2, 1447, 9769, 17231, 17231, 32611, 18527009, 161205841, 3123824801, 26813406071, 4398156030379, 4398156030379
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 2 since 2, f(2) = 11, and f(11) = 47 are primes when f(x) = 4*x + 3.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=4*p+3}, While[ PrimeQ[q], q=4*q+3; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 9] (* Giovanni Resta, Mar 21 2017 *)
  • PARI
    has(p,n)=for(i=2,n, if(!isprime(p=4*p+3), return(0))); 1
    a(n)=forprime(p=2,, if(has(p,n), return(p))) \\ Charles R Greathouse IV, Jan 20 2017

Extensions

a(11)-a(12) from Donovan Johnson, Sep 27 2008
a(13) from John Cerkan, Jan 20 2017
a(14)-a(15) from Giovanni Resta, Mar 21 2017

A084959 Initial prime of a prime chain of length n under the iteration x->5x+6.

Original entry on oeis.org

2, 5, 7, 7, 79, 79, 345431, 21171649, 34640153, 4174239239, 268130051191, 268130051191, 253134809926049, 253134809926049, 253134809926049
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 13 since 7, f(7) = 41, and f(41) = 211 are primes when f(x) = 5*x + 6.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q = 5*p+6}, While[PrimeQ[q], q = 5*q+6; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(7) corrected and a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13)-a(15) from Giovanni Resta, Mar 22 2017

A084961 Initial prime of the first prime chain of length n under the iteration x->6x+5.

Original entry on oeis.org

2, 2, 2, 2, 11, 13, 115571, 23586221, 53165771, 3398453717, 615502598677, 32504183957101, 164289842304587
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 10175130529. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 2 since 2, f(2) = 17, and f(17) = 107 are primes when f(x) = 6*x + 5.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=6*p+5}, While[ PrimeQ[q], q = 6*q+5; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13) from Giovanni Resta, Mar 22 2017

A081173 a(1) = 2, then a(n) = greatest prime factor of (a(n-1)^2+2).

Original entry on oeis.org

2, 3, 11, 41, 17, 97, 3137, 13499, 60741001, 14158633, 7424699571433, 18375387908679124623224497, 152868746152697352174823427, 114585848725150699093848122619332057, 2117552824725684501808097956698634897, 34759922213207174486822944687721824905112848905750167403101021576017059, 57191433705834025254780615830990723253902440879104281100230506839641
Offset: 1

Views

Author

Donald S. McDonald, Apr 17 2003

Keywords

Examples

			a(2) = 3 because 3 is greatest prime factor of 2^2+2. a(3)=11 because 3^2+2 is prime.
		

References

  • Teske, Edlyn and Williams, Hugh C., A note on Shanks's chains of primes, in Algorithmic number theory (Leiden, 2000), 563-580, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.

Crossrefs

Cf. A083388.

Programs

  • Mathematica
    a[1]=2; a[n_] := a[n]=FactorInteger[a[n-1]^2+2][[ -1, 1]]
    NestList[FactorInteger[#^2+2][[-1,1]]&,2,15] (* Harvey P. Dale, Jun 21 2022 *)

Extensions

More terms from Donald S. McDonald, Apr 20 2003
More terms from Robert G. Wilson v and Dean Hickerson, Apr 22 2003
More terms from Dennis Langdeau (dlangdea(AT)sfu.ca), Jun 18 2006
Definition clarified by Harvey P. Dale, Jun 21 2022

A323713 a(n) = beginning of a run of at least n primes when x -> 3*x - 2 is iterated.

Original entry on oeis.org

2, 3, 3, 5, 61, 1171241, 1197631, 25451791, 25451791, 9560914721, 9560914721, 860964705721, 185133795875771
Offset: 1

Views

Author

Jinyuan Wang, Jan 25 2019

Keywords

Comments

For n > 4, a(n) == 1 (mod 10).

Examples

			a(4) = 5 because 5 is the beginning of 4 primes in succession: 5, 3*5 - 2 = 13 is prime, 3*13 - 2 = 37 is prime, 3*37 - 2 = 109 is prime.
		

Crossrefs

Cf. A083388.

Programs

  • Mathematica
    c[p_] := Block[{k=1, q = 3 p - 2}, While[PrimeQ[q], q = 3 q - 2; k++]; k]; a[n_] := Block[{p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7]
  • PARI
    a(n)={x=1;k=1;while(k==1,m=0;y=x;while(isprime(y),m++;if(m==n,k=x);y=3*y-2);x++);k;}

Extensions

a(8)-a(11) from Daniel Suteu, Jan 27 2019
a(12)-a(13) from Giovanni Resta, Feb 04 2019
Showing 1-9 of 9 results.