A084954
Initial prime of a prime chain of length n under the iteration x->2x+3.
Original entry on oeis.org
2, 2, 2, 2, 47, 47, 6047, 477727, 30596497, 3388516667, 340746580567, 1763093883977, 773521306107547, 1142275515892937, 391230854658184967
Offset: 1
a(3) = 2 since 2, 2*2+3=7 and 2*7+3=17 are primes.
Cf.
A057330,
A057331,
A083388,
A084955,
A084956,
A084957,
A084958,
A084959,
A084960,
A084961,
A128509,
A134701,
A134702.
A084960
Initial prime of a prime chain of length n under the iteration x->5x+4.
Original entry on oeis.org
2, 3, 5, 83, 263, 5333, 5333, 6714497, 42360737, 3757699889, 3757699889, 1431898413161, 5654774136689, 12756824771254199, 184574272412533499
Offset: 1
a(3) = 5 since 5, f(5) = 29 and f(29) = 149 are primes when f(x) = 5x+4.
-
t[p_] := Block[{c=1, q = 5*p+4}, While[ PrimeQ@q, q = 5*q + 4; c++]; c]; a[n_] := Block[{p = 2}, While[t[p] < n, p = NextPrime@ p]; p]; Array[a, 8] (* Giovanni Resta, Mar 21 2017 *)
A084958
Initial prime of a prime chain of length n under the iteration x->5x+2.
Original entry on oeis.org
2, 3, 13, 19, 373, 135859, 135859, 18235423, 26588257, 93112729, 376038903103, 7087694466289, 120223669028389
Offset: 1
a(3)=13 since 13, f(13)=67 and f(67)=337 are primes when f(x) = 5x+2.
-
c[p_] := Block[{k = 1, q = 5*p+2}, While[ PrimeQ[q], q = 5*q+2; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 7] (* Giovanni Resta, Mar 21 2017 *)
A084956
Initial prime of the first prime chain of length n under the iteration x -> 3x+4.
Original entry on oeis.org
2, 3, 3, 23, 3203, 34613, 165443, 1274803, 26314573, 26314573, 590256673403, 15113026057043, 334156170011893, 3998669569752373
Offset: 1
a(3) = 3 since 3, f(3) = 13 and f(13) = 43 are primes when f(x) = 3*x + 4.
-
c[p_] := Block[{k=1, q=3*p + 4}, While[PrimeQ[q], q=3*q+4; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)
A084957
Initial prime of the first prime chain of length n under the iteration x -> 4x + 3.
Original entry on oeis.org
2, 2, 2, 2, 1447, 9769, 17231, 17231, 32611, 18527009, 161205841, 3123824801, 26813406071, 4398156030379, 4398156030379
Offset: 1
a(3) = 2 since 2, f(2) = 11, and f(11) = 47 are primes when f(x) = 4*x + 3.
-
c[p_] := Block[{k=1, q=4*p+3}, While[ PrimeQ[q], q=4*q+3; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 9] (* Giovanni Resta, Mar 21 2017 *)
-
has(p,n)=for(i=2,n, if(!isprime(p=4*p+3), return(0))); 1
a(n)=forprime(p=2,, if(has(p,n), return(p))) \\ Charles R Greathouse IV, Jan 20 2017
A084959
Initial prime of a prime chain of length n under the iteration x->5x+6.
Original entry on oeis.org
2, 5, 7, 7, 79, 79, 345431, 21171649, 34640153, 4174239239, 268130051191, 268130051191, 253134809926049, 253134809926049, 253134809926049
Offset: 1
a(3) = 13 since 7, f(7) = 41, and f(41) = 211 are primes when f(x) = 5*x + 6.
-
c[p_] := Block[{k=1, q = 5*p+6}, While[PrimeQ[q], q = 5*q+6; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)
A084961
Initial prime of the first prime chain of length n under the iteration x->6x+5.
Original entry on oeis.org
2, 2, 2, 2, 11, 13, 115571, 23586221, 53165771, 3398453717, 615502598677, 32504183957101, 164289842304587
Offset: 1
a(3) = 2 since 2, f(2) = 17, and f(17) = 107 are primes when f(x) = 6*x + 5.
-
c[p_] := Block[{k=1, q=6*p+5}, While[ PrimeQ[q], q = 6*q+5; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)
A081173
a(1) = 2, then a(n) = greatest prime factor of (a(n-1)^2+2).
Original entry on oeis.org
2, 3, 11, 41, 17, 97, 3137, 13499, 60741001, 14158633, 7424699571433, 18375387908679124623224497, 152868746152697352174823427, 114585848725150699093848122619332057, 2117552824725684501808097956698634897, 34759922213207174486822944687721824905112848905750167403101021576017059, 57191433705834025254780615830990723253902440879104281100230506839641
Offset: 1
a(2) = 3 because 3 is greatest prime factor of 2^2+2. a(3)=11 because 3^2+2 is prime.
- Teske, Edlyn and Williams, Hugh C., A note on Shanks's chains of primes, in Algorithmic number theory (Leiden, 2000), 563-580, Lecture Notes in Comput. Sci., 1838, Springer, Berlin, 2000.
-
a[1]=2; a[n_] := a[n]=FactorInteger[a[n-1]^2+2][[ -1, 1]]
NestList[FactorInteger[#^2+2][[-1,1]]&,2,15] (* Harvey P. Dale, Jun 21 2022 *)
More terms from Dennis Langdeau (dlangdea(AT)sfu.ca), Jun 18 2006
A323713
a(n) = beginning of a run of at least n primes when x -> 3*x - 2 is iterated.
Original entry on oeis.org
2, 3, 3, 5, 61, 1171241, 1197631, 25451791, 25451791, 9560914721, 9560914721, 860964705721, 185133795875771
Offset: 1
a(4) = 5 because 5 is the beginning of 4 primes in succession: 5, 3*5 - 2 = 13 is prime, 3*13 - 2 = 37 is prime, 3*37 - 2 = 109 is prime.
-
c[p_] := Block[{k=1, q = 3 p - 2}, While[PrimeQ[q], q = 3 q - 2; k++]; k]; a[n_] := Block[{p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7]
-
a(n)={x=1;k=1;while(k==1,m=0;y=x;while(isprime(y),m++;if(m==n,k=x);y=3*y-2);x++);k;}
Showing 1-9 of 9 results.
Comments