cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A005585 5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.

Original entry on oeis.org

1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, 5005, 7371, 10556, 14756, 20196, 27132, 35853, 46683, 59983, 76153, 95634, 118910, 146510, 179010, 217035, 261261, 312417, 371287, 438712, 515592, 602888, 701624, 812889, 937839, 1077699, 1233765, 1407406
Offset: 1

Views

Author

Keywords

Comments

Convolution of triangular numbers (A000217) and squares (A000290) (n>=1). - Graeme McRae, Jun 07 2006
p^k divides a(p^k-3), a(p^k-2), a(p^k-1) and a(p^k) for prime p > 5 and integer k > 0. p^k divides a((p^k-3)/2) for prime p > 5 and integer k > 0. - Alexander Adamchuk, May 08 2007
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
5-dimensional square numbers, fourth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+4, i+4)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Antidiagonal sums of the convolution array A213550. - Clark Kimberling, Jun 17 2012
Binomial transform of (1, 6, 14, 16, 9, 2, 0, 0, 0, ...). - Gary W. Adamson, Jul 28 2015
2*a(n) is number of ways to place 4 queens on an (n+3) X (n+3) chessboard so that they diagonally attack each other exactly 6 times. The maximal possible attack number, p=binomial(k,2)=6 for k=4 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015
While adjusting for offsets, add A000389 to find the next in series A000389, A005585, A051836, A034263, A027800, A051843, A051877, A051878, A051879, A051880, A056118, A271567. (See Bruno Berselli's comments in A271567.) - Bruce J. Nicholson, Jun 21 2018
Coefficients in the terminating series identity 1 - 7*n/(n + 6) + 27*n*(n - 1)/((n + 6)*(n + 7)) - 77*n*(n - 1)*(n - 2)/((n + 6)*(n + 7)*(n + 8)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A040977. - Peter Bala, Feb 18 2019

Examples

			G.f. = x + 7*x^2 + 27*x^3 + 77*x^4 + 182*x^5 + 378*x^6 + 714*x^7 + 1254*x^8 + ... - _Michael Somos_, Jun 24 2018
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = ((-1)^(n+1))*A053120(2*n+3, 5)/16, (1/16 of sixth unsigned column of Chebyshev T-triangle, zeros omitted).
Partial sums of A002415.
Cf. A006542, A040977, A047819, A111125 (third column).
Cf. a(n) = ((-1)^(n+1))*A084960(n+1, 2)/16 (compare with the first line). - Wolfdieter Lang, Aug 04 2014

Programs

  • Magma
    I:=[1, 7, 27, 77, 182, 378]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    [seq(binomial(n+2,6)-binomial(n,6), n=4..45)]; # Zerinvary Lajos, Jul 21 2006
    A005585:=(1+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    With[{c=5!},Table[n(n+1)(n+2)(n+3)(2n+3)/c,{n,40}]] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,7,27,77,182,378},40] (* Harvey P. Dale, Oct 04 2011 *)
    CoefficientList[Series[(1 + x) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
  • PARI
    a(n)=binomial(n+3,4)*(2*n+3)/5 \\ Charles R Greathouse IV, Jul 28 2015

Formula

G.f.: x*(1+x)/(1-x)^6.
a(n) = 2*C(n+4, 5) - C(n+3, 4). - Paul Barry, Mar 04 2003
a(n) = C(n+3, 5) + C(n+4, 5). - Paul Barry, Mar 17 2003
a(n) = C(n+2, 6) - C(n, 6), n >= 4. - Zerinvary Lajos, Jul 21 2006
a(n) = Sum_{k=1..n} T(k)*T(k+1)/3, where T(n) = n(n+1)/2 is a triangular number. - Alexander Adamchuk, May 08 2007
a(n-1) = (1/4)*Sum_{1 <= x_1, x_2 <= n} |x_1*x_2*det V(x_1,x_2)| = (1/4)*Sum_{1 <= i,j <= n} i*j*|i-j|, where V(x_1,x_2) is the Vandermonde matrix of order 2. First differences of A040977. - Peter Bala, Sep 21 2007
a(n) = C(n+4,4) + 2*C(n+4,5). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), a(1)=1, a(2)=7, a(3)=27, a(4)=77, a(5)=182, a(6)=378. - Harvey P. Dale, Oct 04 2011
a(n) = (1/6)*Sum_{i=1..n+1} (i*Sum_{k=1..i} (i-1)*k). - Wesley Ivan Hurt, Nov 19 2014
E.g.f.: x*(2*x^4 + 35*x^3 + 180*x^2 + 300*x + 120)*exp(x)/120. - Robert Israel, Nov 19 2014
a(n) = A000389(n+3) + A000389(n+4). - Bruce J. Nicholson, Jun 21 2018
a(n) = -a(-3-n) for all n in Z. - Michael Somos, Jun 24 2018
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 40*(16*log(2) - 11)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*(8*Pi - 25)/3. (End)
a(n) = A004302(n+1) - A207361(n+1). - J. M. Bergot, May 20 2022
a(n) = Sum_{i=0..n+1} Sum_{j=i..n+1} i*j*(j-i)/2. - Darío Clavijo, Oct 11 2023
a(n) = (A000538(n+1) - A000330(n+1))/12. - Yasser Arath Chavez Reyes, Feb 21 2024

A050486 a(n) = binomial(n+6,6)*(2n+7)/7.

Original entry on oeis.org

1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 17875, 30888, 51272, 82212, 127908, 193800, 286824, 415701, 591261, 826804, 1138500, 1545830, 2072070, 2744820, 3596580, 4665375, 5995431, 7637904, 9651664, 12104136, 15072200, 18643152, 22915728, 28001193
Offset: 0

Views

Author

Barry E. Williams, Dec 26 1999

Keywords

Comments

If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-8) is the number of 8-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
7-dimensional square numbers, sixth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} C(n+6,i+6)*b(i), where b(i) = [1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
2*a(n) is number of ways to place 6 queens on an (n+6) X (n+6) chessboard so that they diagonally attack each other exactly 15 times. The maximal possible attack number, p=binomial(k,2)=15 for k=6 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015
Coefficients in the terminating series identity 1 - 9*n/(n + 8) + 44*n*(n - 1)/((n + 8)*(n + 9)) - 156*n*(n - 1)*(n - 2)/((n + 8)*(n + 9)*(n + 10)) + ... = 0 for n = 1,2,3,.... Cf. A005585 and A053347. - Peter Bala, Feb 18 2019

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Partial sums of A040977, A005585.
Fourth column (s=3, without leading zeros) of A111125. - Wolfdieter Lang, Oct 18 2012
Cf. A084960 (unsigned fourth column divided by 64). - Wolfdieter Lang, Aug 04 2014

Programs

  • Magma
    [Binomial(n+6, 6) + 2*Binomial(n+6, 7): n in [0..35]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    A050486:=n->binomial(n+6,6)*(2*n+7)/7: seq(A050486(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016
  • Mathematica
    CoefficientList[Series[(1 + x) / (1 - x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    Table[SeriesCoefficient[(1 + x)/(1 - x)^8, {x, 0, n}], {n, 0, 28}] (* or *)
    Table[Binomial[n + 6, 6] (2 n + 7)/7, {n, 0, 30}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    a(n)=binomial(n+6,6)*(2*n+7)/7 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Python
    A050486_list, m = [], [2]+[1]*7
    for _ in range(10**2):
        A050486_list.append(m[-1])
        for i in range(7):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

Formula

a(n) = (-1)^n*A053120(2*n+7, 7)/64 (1/64 of eighth unsigned column of Chebyshev T-triangle, zeros omitted).
G.f.: (1+x)/(1-x)^8.
a(n) = 2*C(n+7, 7)-C(n+6, 6). - Paul Barry, Mar 04 2003
a(n) = C(n+6,6)+2*C(n+6,7). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (-1)^n*A084930(n+3, 3)/64. Compare with the first line above. - Wolfdieter Lang, Aug 04 2014
a(n) = 8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+8*a(n-7)-a(n-8) for n>7. - Wesley Ivan Hurt, Jan 01 2016
From Amiram Eldar, Jan 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 24871/25 - 7168*log(2)/5.
Sum_{n>=0} (-1)^n/a(n) = 1792*Pi/5 - 28126/25. (End)

A084954 Initial prime of a prime chain of length n under the iteration x->2x+3.

Original entry on oeis.org

2, 2, 2, 2, 47, 47, 6047, 477727, 30596497, 3388516667, 340746580567, 1763093883977, 773521306107547, 1142275515892937, 391230854658184967
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
Is it smallest initial prime of a prime chain of length n under the iteration x->2x+3, or not? At least up to 3388516667 it is the smallest one. - Zak Seidov, Dec 20 2013

Examples

			a(3) = 2 since 2, 2*2+3=7 and 2*7+3=17 are primes.
		

Crossrefs

Extensions

More terms from Don Reble, Nov 07 2007
a(15) from Bert Dobbelaere, Jun 01 2025

A084958 Initial prime of a prime chain of length n under the iteration x->5x+2.

Original entry on oeis.org

2, 3, 13, 19, 373, 135859, 135859, 18235423, 26588257, 93112729, 376038903103, 7087694466289, 120223669028389
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3)=13 since 13, f(13)=67 and f(67)=337 are primes when f(x) = 5x+2.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k = 1, q = 5*p+2}, While[ PrimeQ[q], q = 5*q+2; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 7] (* Giovanni Resta, Mar 21 2017 *)

Extensions

a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 20 2017
a(13) from Giovanni Resta, Mar 21 2017

A084956 Initial prime of the first prime chain of length n under the iteration x -> 3x+4.

Original entry on oeis.org

2, 3, 3, 23, 3203, 34613, 165443, 1274803, 26314573, 26314573, 590256673403, 15113026057043, 334156170011893, 3998669569752373
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. - Donovan Johnson, Sep 27 2008

Examples

			a(3) = 3 since 3, f(3) = 13 and f(13) = 43 are primes when f(x) = 3*x + 4.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=3*p + 4}, While[PrimeQ[q], q=3*q+4; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(9)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 13 2017
a(13)-a(14) from Giovanni Resta, Mar 22 2017

A084957 Initial prime of the first prime chain of length n under the iteration x -> 4x + 3.

Original entry on oeis.org

2, 2, 2, 2, 1447, 9769, 17231, 17231, 32611, 18527009, 161205841, 3123824801, 26813406071, 4398156030379, 4398156030379
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = c*x + d.

Examples

			a(3) = 2 since 2, f(2) = 11, and f(11) = 47 are primes when f(x) = 4*x + 3.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=4*p+3}, While[ PrimeQ[q], q=4*q+3; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime@ p]; p]; Array[a, 9] (* Giovanni Resta, Mar 21 2017 *)
  • PARI
    has(p,n)=for(i=2,n, if(!isprime(p=4*p+3), return(0))); 1
    a(n)=forprime(p=2,, if(has(p,n), return(p))) \\ Charles R Greathouse IV, Jan 20 2017

Extensions

a(11)-a(12) from Donovan Johnson, Sep 27 2008
a(13) from John Cerkan, Jan 20 2017
a(14)-a(15) from Giovanni Resta, Mar 21 2017

A084959 Initial prime of a prime chain of length n under the iteration x->5x+6.

Original entry on oeis.org

2, 5, 7, 7, 79, 79, 345431, 21171649, 34640153, 4174239239, 268130051191, 268130051191, 253134809926049, 253134809926049, 253134809926049
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 8695354111. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 13 since 7, f(7) = 41, and f(41) = 211 are primes when f(x) = 5*x + 6.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q = 5*p+6}, While[PrimeQ[q], q = 5*q+6; k++]; k]; a[n_] := Block[{p = 2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(7) corrected and a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13)-a(15) from Giovanni Resta, Mar 22 2017

A084961 Initial prime of the first prime chain of length n under the iteration x->6x+5.

Original entry on oeis.org

2, 2, 2, 2, 11, 13, 115571, 23586221, 53165771, 3398453717, 615502598677, 32504183957101, 164289842304587
Offset: 1

Views

Author

W. Edwin Clark, Jun 14 2003

Keywords

Comments

This is a special case of prime chains generated by f(x) = cx + d.
a(11) > 10175130529. [Donovan Johnson, Sep 27 2008]

Examples

			a(3) = 2 since 2, f(2) = 17, and f(17) = 107 are primes when f(x) = 6*x + 5.
		

Crossrefs

Programs

  • Mathematica
    c[p_] := Block[{k=1, q=6*p+5}, While[ PrimeQ[q], q = 6*q+5; k++]; k]; a[n_] := Block[ {p=2}, While[c[p] < n, p = NextPrime[p]]; p]; Array[a, 7] (* Giovanni Resta, Mar 22 2017 *)

Extensions

a(8)-a(10) from Donovan Johnson, Sep 27 2008
a(11)-a(12) from John Cerkan, Jan 11 2017
a(13) from Giovanni Resta, Mar 22 2017
Showing 1-8 of 8 results.