A083399 Number of divisors of n that are not divisors of other divisors of n.
1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 3, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 4, 2, 3, 2, 3, 3, 3, 3, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 2, 4
Offset: 1
Examples
{1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2, 3, 4 and 6 divide not only 24, but also 8 or 12, therefore a(24) = 3. {1,2,3,4,6,8,12,24} are the divisors of n=24: 1, 2 and 3 are noncomposites, therefore a(24) = 3. - _Jaroslav Krizek_, Nov 25 2009
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [_Wilf A. Wilson_, Jul 21 2017]
Programs
-
Haskell
a083399 = (+ 1) . a001221 -- Reinhard Zumkeller, Sep 14 2015
-
Magma
[(#(PrimeDivisors(n)))+1: n in [1..100]]; // Vincenzo Librandi, Feb 15 2015
-
Maple
A083399 := proc(n) 1+nops(numtheory[factorset](n)) ; end proc: seq(A083399(n),n=1..100) ; # R. J. Mathar, Sep 26 2017
-
Mathematica
A083399[n_Integer]:=1+PrimeNu[n]; (* Enrique Pérez Herrero, Jun 25 2010 *) Rest@ CoefficientList[ Series[(1/(1 - x)) + Sum[1/(1 - x^Prime[j]), {j, 200}], {x, 0, 111}], x] (* Robert G. Wilson v, Aug 16 2011 *)
-
PARI
a(n)=#factor(n)~+1 \\ Charles R Greathouse IV, Sep 14 2015
Formula
a(n) = omega(n) + 1, where omega = A001221.
a(n) = A010553(A007947(n)) = A000005(A000005(A007947(n))) = tau_2(tau_2(rad(n))). - Enrique Pérez Herrero, Jun 25 2010
G.f.: x/(1 - x) + Sum_{k>=1} x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = n * (log(log(n)) + B + 1) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 29 2024
Comments