cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A341444 Dirichlet inverse of A083399, where A083399(n) = 1 + omega(n).

Original entry on oeis.org

1, -2, -2, 2, -2, 5, -2, -2, 2, 5, -2, -7, -2, 5, 5, 2, -2, -7, -2, -7, 5, 5, -2, 9, 2, 5, -2, -7, -2, -16, -2, -2, 5, 5, 5, 14, -2, 5, 5, 9, -2, -16, -2, -7, -7, 5, -2, -11, 2, -7, 5, -7, -2, 9, 5, 9, 5, 5, -2, 30, -2, 5, -7, 2, 5, -16, -2, -7, 5, -16, -2, -23, -2, 5, -7, -7, 5, -16, -2, -11, 2, 5, -2, 30, 5, 5, 5, 9, -2, 30, 5
Offset: 1

Views

Author

Michel Marcus, Feb 12 2021

Keywords

Comments

The Dirichlet inverse function, a(n) = (omega + 1)^(-1)(n). - Original name.

Crossrefs

Dirichlet inverse of A083399.
Cf. A001221, A001222, A008480, A008683, A008966, A341472 (partial sums).
Cf. also A334743.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = -DivisorSum[n, (PrimeNu[n/#] + 1)*a[#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Jul 21 2022 *)
  • PARI
    cOmega(n) = if (n==1, 1, my(f=factor(n)); bigomega(n)!*prod(k=1, #f~, 1/f[k,2]!)); \\ A008480
    a(n) = (-1)^bigomega(n)*sumdiv(n, d, moebius(n/d)^2*cOmega(d));
    
  • PARI
    memoA341444 = Map();
    A341444(n) = if(1==n,1,my(v); if(mapisdefined(memoA341444,n,&v), v, v = -sumdiv(n,d,if(dA341444(d),0)); mapput(memoA341444,n,v); (v))); \\ Antti Karttunen, Jul 21 2022~

Formula

a(n) = (-1)^A001222(n)*Sum_{d | n} A008683(n/d)^2*A008480(d).
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA083399(n/d) * a(d). - Antti Karttunen, Jul 21 2022

Extensions

Data section extended up to a(91) and name edited by Antti Karttunen, Jul 21 2022

A014612 Numbers that are the product of exactly three (not necessarily distinct) primes.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 222, 230, 231, 236, 238, 242, 244
Offset: 1

Views

Author

Keywords

Comments

Sometimes called "triprimes" or "3-almost primes".
See also A001358 for product of two primes (sometimes called semiprimes).
If you graph a(n)/n for n up to 10000 (and probably quite a bit higher), it appears to be converging to something near 3.9. In fact the limit is infinite. - Franklin T. Adams-Watters, Sep 20 2006
Meng shows that for any sufficiently large odd integer n, the equation n = a + b + c has solutions where each of a, b, c is 3-almost prime. The number of such solutions is (log log n)^6/(16 (log n)^3)*n^2*s(n)*(1 + O(1/log log n)), where s(n) = Sum_{q >= 1} Sum_{a = 1..q, (a, q) = 1} exp(i*2*Pi*n*a/q)*mu(n)/phi(n)^3 > 1/2. - Jonathan Vos Post, Sep 16 2005, corrected & rewritten by M. F. Hasler, Apr 24 2019
Also, a(n) are the numbers such that exactly half of their divisors are composite. For the numbers in which exactly half of the divisors are prime, see A167171. - Ivan Neretin, Jan 12 2016

Examples

			From _Gus Wiseman_, Nov 04 2020: (Start)
Also Heinz numbers of integer partitions into three parts, counted by A001399(n-3) = A069905(n) with ordered version A000217, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The sequence of terms together with their prime indices begins:
      8: {1,1,1}     70: {1,3,4}     130: {1,3,6}
     12: {1,1,2}     75: {2,3,3}     138: {1,2,9}
     18: {1,2,2}     76: {1,1,8}     147: {2,4,4}
     20: {1,1,3}     78: {1,2,6}     148: {1,1,12}
     27: {2,2,2}     92: {1,1,9}     153: {2,2,7}
     28: {1,1,4}     98: {1,4,4}     154: {1,4,5}
     30: {1,2,3}     99: {2,2,5}     164: {1,1,13}
     42: {1,2,4}    102: {1,2,7}     165: {2,3,5}
     44: {1,1,5}    105: {2,3,4}     170: {1,3,7}
     45: {2,2,3}    110: {1,3,5}     171: {2,2,8}
     50: {1,3,3}    114: {1,2,8}     172: {1,1,14}
     52: {1,1,6}    116: {1,1,10}    174: {1,2,10}
     63: {2,2,4}    117: {2,2,6}     175: {3,3,4}
     66: {1,2,5}    124: {1,1,11}    182: {1,4,6}
     68: {1,1,7}    125: {3,3,3}     186: {1,2,11}
(End)
		

References

  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974). See p. 211.

Crossrefs

Cf. A000040, A001358 (biprimes), A014613 (quadruprimes), A033942, A086062, A098238, A123072, A123073, A101605 (characteristic function).
Cf. A109251 (number of 3-almost primes <= 10^n).
Subsequence of A145784. - Reinhard Zumkeller, Oct 19 2008
Cf. A007304 is the squarefree case.
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), this sequence (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
Cf. A253721 (final digits).
A014311 is a different ranking of ordered triples, with strict case A337453.
A046316 is the restriction to odds, with strict case A307534.
A075818 is the restriction to evens, with strict case A075819.
A285508 is the nonsquarefree case.
A001399(n-3) = A069905(n) = A211540(n+2) counts 3-part partitions.

Programs

  • Haskell
    a014612 n = a014612_list !! (n-1)
    a014612_list = filter ((== 3) . a001222) [1..] -- Reinhard Zumkeller, Apr 02 2012
    
  • Maple
    with(numtheory); A014612:=n->`if`(bigomega(n)=3, n, NULL); seq(A014612(n), n=1..250) # Wesley Ivan Hurt, Feb 05 2014
  • Mathematica
    threeAlmostPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 3; Select[ Range@244, threeAlmostPrimeQ[ # ] &] (* Robert G. Wilson v, Jan 04 2006 *)
    NextkAlmostPrime[n_, k_: 2, m_: 1] := Block[{c = 0, sgn = Sign[m]}, kap = n + sgn; While[c < Abs[m], While[ PrimeOmega[kap] != k, If[sgn < 0, kap--, kap++]]; If[ sgn < 0, kap--, kap++]; c++]; kap + If[sgn < 0, 1, -1]]; NestList[NextkAlmostPrime[#, 3] &, 2^3, 56] (* Robert G. Wilson v, Jan 27 2013 *)
    Select[Range[244], PrimeOmega[#] == 3 &] (* Jayanta Basu, Jul 01 2013 *)
  • PARI
    isA014612(n)=bigomega(n)==3 \\ Charles R Greathouse IV, May 07 2011
    
  • PARI
    list(lim)=my(v=List(),t);forprime(p=2,lim\4, forprime(q=2,min(lim\(2*p),p), t=p*q; forprime(r=2,min(lim\t,q),listput(v,t*r)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    from sympy import factorint
    def ok(n): f = factorint(n); return sum(f[p] for p in f) == 3
    print(list(filter(ok, range(245)))) # Michael S. Branicky, Aug 12 2021
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A014612(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 17 2024
  • Scala
    def primeFactors(number: Int, list: List[Int] = List())
                                                          : List[Int] = {
      for (n <- 2 to number if (number % n == 0)) {
        return primeFactors(number / n, list :+ n)
      }
      list
    }
    (1 to 250).filter(primeFactors().size == 3) // _Alonso del Arte, Nov 04 2020, based on algorithm by Victor Farcic (vfarcic)
    

Formula

Product p_i^e_i with Sum e_i = 3.
a(n) ~ 2n log n / (log log n)^2 as n -> infinity [Landau, p. 211].
Tau(a(n)) = 2 * (omega(a(n)) + 1) = 2*A083399(a(n)), where tau = A000005 and omega = A001221. - Wesley Ivan Hurt, Jun 28 2013
a(n) = A078840(3,n). - R. J. Mathar, Jan 30 2019

Extensions

More terms from Patrick De Geest, Jun 15 1998

A305614 Expansion of Sum_{p prime} x^p/(1 + x^p).

Original entry on oeis.org

0, 0, 1, 1, -1, 1, 0, 1, -1, 1, 0, 1, -2, 1, 0, 2, -1, 1, 0, 1, -2, 2, 0, 1, -2, 1, 0, 1, -2, 1, -1, 1, -1, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -2, 2, 0, 1, -2, 1, 0, 2, -2, 1, 0, 2, -2, 2, 0, 1, -3, 1, 0, 2, -1, 2, -1, 1, -2, 2, -1, 1, -2, 1, 0, 2, -2, 2, -1
Offset: 0

Views

Author

Gus Wiseman, Jun 06 2018

Keywords

Comments

a(n) is the number of prime divisors p|n such that n/p is odd, minus the number of prime divisors p|n such that n/p is even.

Examples

			The prime divisors of 12 are 2, 3. We see that 12/2 = 6, 12/3 = 4. None of those are odd, but both of them are even, so a(12) = -2.
The prime divisors of 30 are {2,3,5} with quotients {15,10,6}. One of these is odd and two are even, so a(30) = 1 - 2 = -1.
		

Crossrefs

Programs

  • Maple
    a:= n-> -add((-1)^(n/i[1]), i=ifactors(n)[2]):
    seq(a(n), n=0..100);  # Alois P. Heinz, Jun 07 2018
    # Alternative
    N:= 1000: # to get a(0)..a(N)
    V:= Vector(N):
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      R:= [seq(i,i=p..N,p)];
      W:= ;
      V[R]:= V[R]+W;
    od:
    [0,seq(V[i],i=1..N)]; # Robert Israel, Jun 07 2018
  • Mathematica
    Table[Sum[If[PrimeQ[d], (-1)^(n/d - 1), 0], {d, Divisors[n]}], {n, 30}]

Formula

a(n) = -Sum_{p|n prime} (-1)^(n/p).
From Robert Israel, Jun 07 2018: (Start)
If n is odd, a(n) = A001221(n).
If n == 2 (mod 4), a(n) = 2 - A001221(n).
If n == 0 (mod 4) and n > 0, a(n) = -A001221(n). (End)
L.g.f.: log(Product_{k>=1} (1 + x^prime(k))^(1/prime(k))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018

A048165 Expansion of Product_{k > 0} 1/(1 + x^prime(k)).

Original entry on oeis.org

1, 0, -1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, -1, 2, -2, 2, -3, 3, -3, 4, -4, 5, -6, 6, -6, 8, -9, 9, -11, 12, -13, 14, -16, 19, -19, 21, -25, 26, -28, 32, -36, 38, -41, 46, -50, 55, -60, 65, -70, 77, -85, 91, -99, 108, -116, 126, -138, 149, -160, 174, -188, 202, -219, 237, -255, 274, -296
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nn=20;
    ser=Product[1/(1+x^p),{p,Select[Range[nn],PrimeQ]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}] (* Gus Wiseman, Jun 06 2018 *)

Formula

a(n) = A184198(n) - A184199(n). - Vaclav Kotesovec, Jan 11 2021

A055212 Number of composite divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 3, 0, 3, 0, 3, 1, 1, 0, 5, 1, 1, 2, 3, 0, 4, 0, 4, 1, 1, 1, 6, 0, 1, 1, 5, 0, 4, 0, 3, 3, 1, 0, 7, 1, 3, 1, 3, 0, 5, 1, 5, 1, 1, 0, 8, 0, 1, 3, 5, 1, 4, 0, 3, 1, 4, 0, 9, 0, 1, 3, 3, 1, 4, 0, 7, 3, 1, 0, 8, 1, 1, 1, 5, 0, 8, 1, 3, 1, 1, 1, 9, 0, 3, 3, 6, 0, 4, 0, 5, 4
Offset: 1

Views

Author

Leroy Quet, Jun 23 2000

Keywords

Comments

Trivially, there is only one run of three consecutive 0's. However, there are infinitely many runs of three consecutive 1's and they are at positions A056809(n), A086005(n), and A115393(n) for n >= 1. - Timothy L. Tiffin, Jun 21 2021

Examples

			a[20] = 3 because the composite divisors of 20 are 4, 10, 20.
		

Crossrefs

Complement of A083399.

Programs

Formula

a(n) = A033273(n) - 1.
a(n) = tau(n)-omega(n)-1, where tau=A000005 and omega=A001221. - Reinhard Zumkeller, Jun 13 2003
G.f.: -x/(1 - x) + Sum_{k>=1} (x^k - x^prime(k))/((1 - x^k)*(1 - x^prime(k))). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) ~ n*log(n) - n*log(log(n)) + (2*gamma - 2 - B)*n, where gamma is Euler's constant (A001620) and B is Mertens's constant (A077761). - Amiram Eldar, Dec 07 2023

A111725 Number of residues modulo n of the maximum order.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 3, 4, 2, 4, 4, 8, 2, 6, 4, 6, 4, 10, 7, 8, 4, 6, 6, 12, 4, 8, 8, 12, 8, 8, 6, 12, 6, 8, 8, 16, 6, 12, 12, 8, 10, 22, 8, 12, 8, 16, 8, 24, 6, 16, 14, 18, 12, 28, 8, 16, 8, 24, 16, 24, 12, 20, 16, 30, 8, 24, 14, 24, 12, 16, 18, 24, 8, 24, 24, 18, 16, 40, 14, 32, 12
Offset: 1

Views

Author

Max Alekseyev, Nov 18 2005

Keywords

Comments

The maximum order modulo n is given by A002322(n).
a(n) is the number of primitive lambda-roots of n. - Michel Marcus, Mar 17 2016
A primitive lambda-root is an element of maximal order modulo n. - Joerg Arndt, Mar 19 2016
a(n) is odd if and only if n is a factor of 24, i.e., n is in A018253. - Jianing Song, Apr 27 2019

Crossrefs

Programs

  • Maple
    LiDelta := proc(q,n)
        local a,p,e,lam,v ;
        a := 0 ;
        lam := numtheory[lambda](n) ;
        for p in numtheory[factorset](n) do
            e := padic[ordp](n,p) ;
            if p =2 and e= 3 and q =2 and padic[ordp](lam,q) = 1 then
                return A083399(n) ;
            elif isprime(q) then
                v := padic[ordp](lam,q) ;
                if modp( numtheory[lambda](p^e),q^v) = 0 then
                    a := a+1 ;
                end if;
            end if:
        end do:
        a ;
    end proc:
    A111725 := proc(n)
        local a,q ;
        a := 1;
        for q in numtheory[factorset](numtheory[lambda](n)) do
            a := a*(1-1/q^LiDelta(q,n)) ;
        end do:
        a*numtheory[phi](n) ;
    end proc:
    seq(A111725(n),n=1..30) ; # R. J. Mathar, Sep 29 2017
  • Mathematica
    f[list_]:=Count[list,Max[list]];Map[f,Table[Table[MultiplicativeOrder[k,n],{k,Select[Range[n],GCD[#,n]==1&]}],{n,1,100}]]  (* Geoffrey Critzer, Jan 26 2013 *)
  • PARI
    { a(n) = my(r, c, r1); r=1; c=0; for(k=0, n-1, if(gcd(k, n)!=1, next); r1=znorder(Mod(k,n)); if(r1==r, c++); if(r1>r, r=r1; c=1) ); c; }
    
  • PARI
    { A111725(n) = if(n<3,return(1)); my(k,p); k=znstar(n)[2]; p=factor(k[1])[,1]; eulerphi(n) * prod(i=1,#p, (1-1/p[i]^vecsum(apply(x->valuation(k[1]\x,p[i])==0,k))) ); } \\ Max Alekseyev, Oct 23 2021

Formula

For prime n, a(n) = phi(phi(n)) = A010554(n) = phi(n-1). - Nick Hobson, Jan 09 2007
Decompose (Z/nZ)* as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j, then a(n) = Sum_{d divides psi(n)} (mu(psi(n)/d)*Product{i=1..m} gcd(d, k_i)). This is an immediate corollary from the fact that the number of elements in (Z/nZ)* such that x^d == 1 (mod n) is Product{i=1..m} gcd(d, k_i). Here (Z/nZ)* is the multiplicative group of integers modulo n, psi(n) = A002322(n) and mu(n) = A008683(n). - Jianing Song, Apr 27 2019
From Jianing Song, Oct 12 2021: (Start)
Decompose (Z/nZ)* as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j, then a(n) = phi(n) * Product_{p prime dividing phi(n)} (1 - 1/p^r(p)), where r(p) is the number of j such that v(k_j,p) = v(k_m,p), v(s,p) is the p-adic valuation of s.
Proof: let G = (Z/nZ)*, G_p be the Sylow p-subgroup of G, then G = Product_{p prime dividing phi(n)} G_p: every element x can be uniquely written as Product_{p prime dividing phi(n)} x_p for x_p in G_p. Let ord(x) be the order of x. Since ord(x_p, x_p') = 1 for distinct p and p', we have ord(x) = Product_{p prime dividing phi(n)} ord(x_p), hence x is of maximal order if and only if each x_p is of maximal order in G_p.
Each G_p is isomorphic to C_{p^(e_1)} x C_{p^(e_2)} x ... x C_{p^(e_m)} for e_1 <= e_2 <= ... <= e_m, e_m > 0. Write x_p = (x_{p,1}, x_{p,2}, ..., x_{p,m}). Suppose that e_m = e_{m-1} = ... = e_{m-r+1} > e_{m-r}, then x_p is of maximal order in G_p if and only of x_{p,j} is of order p^(e_m) for some m-r+1 <= j <= m, so the number of such x_p is p^(e_1) * p^(e_2) * ... * p^(e_{m-r}) * (p^(r*e_m) - p^(r*((e_m)-1))) = |G_p| * (1 - 1/p^r).
An example: n = 15903, then (Z/nZ)* = C_6 x C_18 x C_90. We can see that r(2) = 3, r(3) = 2 and r(5) = 1, so a(15903) = phi(15903) * (1 - 1/2^3) * (1 - 1/3^2) * (1 - 1/5^1) = 6048.
It should be clear that a(n) = phi(phi(n)) if and only if r(p) = 1 for every prime p dividing phi(n), or v(k_{m-1},p) < v(k_m,p) for every prime p dividing phi(n). Otherwise, a(n) > phi(phi(n)). (End)

A292586 a(n) = A002110(A001221(n)) = product of first omega(n) primes.

Original entry on oeis.org

1, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 2, 6, 6, 2, 2, 6, 2, 6, 6, 6, 2, 6, 2, 6, 2, 6, 2, 30, 2, 2, 6, 6, 6, 6, 2, 6, 6, 6, 2, 30, 2, 6, 6, 6, 2, 6, 2, 6, 6, 6, 2, 6, 6, 6, 6, 6, 2, 30, 2, 6, 6, 2, 6, 30, 2, 6, 6, 30, 2, 6, 2, 6, 6, 6, 6, 30, 2, 6, 2, 6, 2, 30, 6, 6, 6, 6, 2, 30, 6, 6, 6, 6, 6, 6, 2, 6, 6, 6, 2, 30, 2, 6, 30
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2017

Keywords

Comments

The connection with binary tree A005940 is explained by the fact that on a trajectory from its root (1) to any number n, the numbers of the form 4k+2 will never occur consecutively (they are only born as right children of odd numbers, while all their right descendants from then onward are multiples of four). Thus all the runs are separate runs of length one, from which follows that A278222 when applied to A292382 yields only primorials. Moreover, the steps producing 4k+2 numbers are also only steps in A005940 that add new distinct prime factors to the generated number. Thus the total number of such steps is equal to the number of distinct prime factors of the eventual n. Hence A278222(A292382(n)) = A002110(A001221(n)).

Crossrefs

Cf. A083399 (restricted growth transform of this sequence).

Programs

Formula

a(n) = A002110(A001221(n)).
a(n) = A278222(A292382(n)).
For all n >= 1:
A001221(n) = A001221(a(n)) = A001222(a(n)) = A000120(A292382(n)).

A292582 Restricted growth sequence transform of A292589(n); filter based on the prime signature of {n divided by largest squarefree divisor of n}.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 6, 1, 1, 1, 3, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 25 2017

Keywords

Comments

Also a restricted growth sequence transform of A278222(A292380(n)): a filter constructed from the runlengths of multiples of 4 encountered in trajectories of A005940-tree.

Crossrefs

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    write_to_bfile(1,rgs_transform(vector(16384,n,A046523(A003557(n)))),"b292582.txt");

A345926 Number of distinct possible alternating sums of permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2021

Keywords

Comments

First differs from A096825 at a(90) = 3, A096825(90) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also the number of possible values of A056239(d) where d is a divisor of n with half as many prime factors (rounded up) as n.

Examples

			Grouping the 12 permutations of {1,2,2,3} by alternating sum k gives:
  k = -2: (1223) (1322) (2213) (2312)
  k =  0: (1232) (2123) (2321) (3212)
  k =  2: (2132) (2231) (3122) (3221)
so a(90) = 3.
		

Crossrefs

The version for prime factors instead of indices is A343943.
A000005 counts divisors.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001414 adds up prime factors, row sums of A027746.
A056239 adds up prime indices, row sums of A112798.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 gives the alternating sum of prime indices (reverse: A344616).
A345197 counts compositions by length and alternating sum.
A344610 counts partitions by sum and positive reverse-alternating sum.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Union[ats/@Permutations[primeMS[n]]]],{n,100}]
  • Python
    from sympy import factorint, primepi
    from sympy.utilities.iterables import multiset_combinations
    def A345926(n):
        fs = dict((primepi(a),b) for (a,b) in factorint(n).items())
        return len(set(sum(d) for d in multiset_combinations(fs, (sum(fs.values())+1)//2))) # Chai Wah Wu, Aug 23 2021

A106404 Number of even semiprimes dividing n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 02 2005

Keywords

Comments

Also the number of prime divisors p|n such that n/p is even. - Gus Wiseman, Jun 06 2018

Examples

			a(60) = #{4, 6, 10} = #{2*2, 2*3, 2*5} = 3.
		

Crossrefs

Programs

Formula

a(n) = A086971(n) - A106405(n).
a(A100484(n)) = 1.
a(A005408(n)) = 0.
a(A005843(n)) > 0 for n>1.
a(2n) = omega(n), a(2n+1) = 0, where omega(n) is the number of distinct prime divisors of n, A001221. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = card { d | d*p = n, d even, p prime }. - Peter Luschny, Jan 30 2012
O.g.f.: Sum_{p prime} x^(2p)/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018
Showing 1-10 of 18 results. Next