A216327 Irregular triangle of multiplicative orders mod n for the elements of the smallest positive reduced residue system mod n.
1, 1, 1, 2, 1, 2, 1, 4, 4, 2, 1, 2, 1, 3, 6, 3, 6, 2, 1, 2, 2, 2, 1, 6, 3, 6, 3, 2, 1, 4, 4, 2, 1, 10, 5, 5, 5, 10, 10, 10, 5, 2, 1, 2, 2, 2, 1, 12, 3, 6, 4, 12, 12, 4, 3, 6, 12, 2, 1, 6, 6, 3, 3, 2, 1, 4, 2, 4, 4, 2, 4, 2, 1, 4, 4, 2, 2, 4, 4, 2
Offset: 1
Examples
This irregular triangle begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1: 1 2: 1 3: 1 2 4: 1 2 5: 1 4 4 2 6: 1 2 7: 1 3 6 3 6 2 8: 1 2 2 2 9: 1 6 3 6 3 2 10: 1 4 4 2 11: 1 10 5 5 5 10 10 10 5 2 12: 1 2 2 2 13: 1 12 3 6 4 12 12 4 3 6 12 2 14: 1 6 6 3 3 2 15: 1 4 2 4 4 2 4 2 16: 1 4 4 2 2 4 4 2 17: 1 8 16 4 16 16 16 8 8 16 16 16 4 16 8 2 18: 1 6 3 6 3 2 19: 1 18 18 9 9 9 3 6 9 18 3 6 18 18 18 9 9 2 20: 1 4 4 2 2 4 4 2 ... a(3,2) = 2 because A038566(3,2) = 2 and 2^1 == 2 (mod 3), 2^2 = 4 == 1 (mod 3). a(7,3) = 6 because A038566(7,3) = 3 and 3^1 == 3 (mod 7), 3^2 = 9 == 2 (mod 7), 3^3 = 2*3 == 6 (mod 7), 3^4 == 6*3 == 4 (mod 7), 3^5 == 4*3 == 5 (mod 7) and 3^6 == 5*3 == 1 (mod 7). The notation == means 'congruent'. The maximal order modulo 7 is 6 = A002322(7) = phi(7), and it appears twice: A111725(7) = 2. The maximal order modulo 14 is 6 = A002322(14) = 1*6.
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, Fifth edition, Wiley, 1991.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12232 (rows n = 1..200, flattened.)
Crossrefs
Programs
-
Mathematica
Table[Table[MultiplicativeOrder[k,n],{k,Select[Range[n],GCD[#,n]==1&]}],{n,1,13}]//Grid (* Geoffrey Critzer, Jan 26 2013 *)
-
PARI
rowa(n) = select(x->gcd(n, x)==1, [1..n]); \\ A038566 row(n) = apply(znorder, apply(x->Mod(x, n), rowa(n))); \\ Michel Marcus, Sep 12 2023
Comments