cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A048165 Expansion of Product_{k > 0} 1/(1 + x^prime(k)).

Original entry on oeis.org

1, 0, -1, -1, 1, 0, 0, -1, 1, 0, 1, -2, 1, -1, 2, -2, 2, -3, 3, -3, 4, -4, 5, -6, 6, -6, 8, -9, 9, -11, 12, -13, 14, -16, 19, -19, 21, -25, 26, -28, 32, -36, 38, -41, 46, -50, 55, -60, 65, -70, 77, -85, 91, -99, 108, -116, 126, -138, 149, -160, 174, -188, 202, -219, 237, -255, 274, -296
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nn=20;
    ser=Product[1/(1+x^p),{p,Select[Range[nn],PrimeQ]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}] (* Gus Wiseman, Jun 06 2018 *)

Formula

a(n) = A184198(n) - A184199(n). - Vaclav Kotesovec, Jan 11 2021

A305630 Expansion of Product_{r = 1 or not a perfect power} 1/(1 - x^r).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 16, 21, 28, 36, 48, 61, 78, 99, 124, 156, 195, 241, 299, 367, 450, 549, 670, 811, 982, 1183, 1422, 1704, 2040, 2431, 2894, 3435, 4070, 4811, 5679, 6684, 7858, 9217, 10797, 12623, 14738, 17174, 19988, 23225, 26951, 31227, 36141, 41759
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2018

Keywords

Comments

a(n) is the number of integer partitions of n such that each part is either 1 or not a perfect power (A001597, A007916).

Examples

			The a(5) = 6 integer partitions whose parts are 1's or not perfect powers are (5), (32), (311), (221), (2111), (11111).
		

Crossrefs

Programs

  • Maple
    q:= n-> is(n=1 or 1=igcd(map(i-> i[2], ifactors(n)[2])[])):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(q(d), d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 07 2018
  • Mathematica
    nn=20;
    radQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]==1];
    ser=Product[1/(1-x^p),{p,Select[Range[nn],radQ]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

A305631 Expansion of Product_{r not a perfect power} 1/(1 - x^r).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 7, 8, 12, 13, 17, 21, 25, 32, 39, 46, 58, 68, 83, 99, 121, 141, 171, 201, 239, 282, 336, 391, 463, 541, 635, 741, 868, 1005, 1174, 1359, 1580, 1826, 2115, 2436, 2814, 3237, 3726, 4276, 4914, 5618, 6445, 7359, 8414, 9594, 10947, 12453
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2018

Keywords

Comments

a(n) is the number of integer partitions of n whose parts are not perfect powers (A001597, A007916).

Examples

			The a(9) = 5 integer partitions whose parts are not perfect powers are (72), (63), (522), (333), (3222).
		

Crossrefs

Programs

  • Maple
    q:= n-> is(1=igcd(map(i-> i[2], ifactors(n)[2])[])):
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
         `if`(q(d), d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 07 2018
  • Mathematica
    nn=100;
    wadQ[n_]:=n>1&&GCD@@FactorInteger[n][[All,2]]==1;
    ser=Product[1/(1-x^p),{p,Select[Range[nn],wadQ]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

A106404 Number of even semiprimes dividing n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 02 2005

Keywords

Comments

Also the number of prime divisors p|n such that n/p is even. - Gus Wiseman, Jun 06 2018

Examples

			a(60) = #{4, 6, 10} = #{2*2, 2*3, 2*5} = 3.
		

Crossrefs

Programs

Formula

a(n) = A086971(n) - A106405(n).
a(A100484(n)) = 1.
a(A005408(n)) = 0.
a(A005843(n)) > 0 for n>1.
a(2n) = omega(n), a(2n+1) = 0, where omega(n) is the number of distinct prime divisors of n, A001221. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = card { d | d*p = n, d even, p prime }. - Peter Luschny, Jan 30 2012
O.g.f.: Sum_{p prime} x^(2p)/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018

A205745 a(n) = card { d | d*p = n, d odd, p prime }.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 1, 1, 1, 0, 2, 1, 2
Offset: 1

Views

Author

Peter Luschny, Jan 30 2012

Keywords

Comments

Equivalently, a(n) is the number of prime divisors p|n such that n/p is odd. - Gus Wiseman, Jun 06 2018

Crossrefs

Programs

  • Haskell
    a205745 n = sum $ map ((`mod` 2) . (n `div`))
       [p | p <- takeWhile (<= n) a000040_list, n `mod` p == 0]
    -- Reinhard Zumkeller, Jan 31 2012
  • Mathematica
    a[n_] := Sum[ Boole[ OddQ[d] && PrimeQ[n/d] ], {d, Divisors[n]} ]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 27 2013 *)
  • PARI
    a(n)=if(n%2,omega(n),n%4/2) \\ Charles R Greathouse IV, Jan 30 2012
    
  • Sage
    def A205745(n):
        return sum((n//d) % 2 for d in divisors(n) if is_prime(d))
    [A205745(n) for n in (1..105)]
    

Formula

O.g.f.: Sum_{p prime} x^p/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018
Sum_{k=1..n} a(k) = (n/2) * (log(log(n)) + B) + O(n/log(n)), where B is Mertens's constant (A077761). - Amiram Eldar, Sep 21 2024

A373458 Expansion of Sum_{p prime} x^p/(1 - p*x^p).

Original entry on oeis.org

0, 1, 1, 2, 1, 7, 1, 8, 9, 21, 1, 59, 1, 71, 106, 128, 1, 499, 1, 637, 778, 1035, 1, 4235, 625, 4109, 6561, 8535, 1, 39192, 1, 32768, 59170, 65553, 18026, 308219, 1, 262163, 531610, 602413, 1, 2659706, 1, 2098483, 5173594, 4194327, 1, 22737515, 117649, 18730341
Offset: 1

Views

Author

Seiichi Manyama, Jun 06 2024

Keywords

Crossrefs

Programs

  • Maple
    A373458 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isprime(d) then
                a := a+d^(n/d-1) ;
            end if;
        end do:
        a ;
    end proc:
    seq(A373458(n),n=1..20) ; # R. J. Mathar, Jun 07 2024
  • Mathematica
    a[n_]:=Sum[Boole[PrimeQ[d]]d^(n/d-1),{d,Divisors[n]}]; Array[a,50] (* Stefano Spezia, Mar 30 2025 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d)*d^(n/d-1));

Formula

a(n) = Sum_{p|n prime} p^(n/p - 1).
If p is prime, a(p) = 1.

A305632 Expansion of Product_{r = 1 or not a perfect power} 1/(1 + (-x)^r).

Original entry on oeis.org

1, 1, 0, 1, 2, 2, 1, 2, 4, 3, 2, 4, 6, 5, 4, 7, 10, 8, 7, 11, 15, 13, 12, 17, 22, 19, 18, 25, 30, 28, 26, 35, 42, 39, 38, 49, 59, 56, 54, 69, 81, 77, 76, 94, 110, 105, 105, 127, 147, 141, 142, 171, 195, 189, 190, 227, 257, 250, 254, 299, 335, 328, 334, 390, 432
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2018

Keywords

Examples

			O.g.f.: 1/((1 - x)(1 + x^2)(1 - x^3)(1 - x^5)(1 + x^6)(1 - x^7)(1 + x^10)...).
		

Crossrefs

Programs

  • Mathematica
    nn=20;
    radQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]==1];
    ser=Product[1/(1+(-x)^p),{p,Select[Range[nn],radQ]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}]

A305633 Expansion of Sum_{r not a perfect power} x^r/(1 + x^r).

Original entry on oeis.org

0, 0, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -2, 1, 1, 3, -1, 1, 2, 1, -2, 3, 1, 1, -3, 1, 1, 1, -2, 1, 1, 1, -1, 3, 1, 3, -3, 1, 1, 3, -3, 1, 1, 1, -2, 4, 1, 1, -4, 1, 2, 3, -2, 1, 3, 3, -3, 3, 1, 1, -4, 1, 1, 4, -1, 3, 1, 1, -2, 3, 1, 1, -3, 1, 1, 4, -2, 3, 1, 1, -4
Offset: 0

Views

Author

Gus Wiseman, Jun 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nn=100;
    wadQ[n_]:=n>1&&GCD@@FactorInteger[n][[All,2]]==1;
    ser=Sum[x^p/(1+x^p),{p,Select[Range[nn],wadQ]}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]

A317528 Expansion of Sum_{k>=1} mu(k)^2*x^k/(1 + x^k), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 0, 2, -2, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 4, -2, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 2, -4, 2, 0, 2, -2, 4, 0, 4, -4, 2, 0, 4, -4, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 2, 0, 4, -4, 4, 0, 2, -8, 2, 0, 4, -2, 4, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 2, -8, 4, 0, 4, -4, 2, 0, 4, -4, 4, 0, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(coeff(series(add(mobius(k)^2*x^k/(1+x^k),k=1..n), x,n+1),x,n),n=1..120); # Muniru A Asiru, Jul 30 2018
  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + MoebiusMu[k]^2 x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, SquareFreeQ[#] &], {n, 95}]
    f[p_, e_] := 2; f[2, e_] := If[e == 1, 0, -2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2022 *)
  • PARI
    A317528(n) = sumdiv(n,d,((-1)^(1+d))*issquarefree(n/d)); \\ Antti Karttunen, Dec 05 2021

Formula

G.f.: Sum_{k>=1} x^A005117(k)/(1 + x^A005117(k)).
L.g.f.: log(Product_{k>=1} (1 + mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A008966(d).
If n is odd, a(n) = A034444(n).
Multiplicative with a(2) = 0, a(2^e) = -2 for e>1, and a(p^e) = 2 for p>2 and e>=1. - Amiram Eldar, Nov 19 2022

A317531 Expansion of Sum_{p prime, k>=1} x^(p^k)/(1 + x^(p^k)).

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 2, -2, 1, -1, 1, -1, 2, 0, 1, -2, 2, 0, 3, -1, 1, -1, 1, -3, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -1, 3, 0, 1, -3, 2, -1, 2, -1, 1, -2, 2, -2, 2, 0, 1, -2, 1, 0, 3, -4, 2, -1, 1, -1, 2, -1, 1, -3, 1, 0, 3, -1, 2, -1, 1, -3, 4, 0, 1, -2, 2, 0, 2, -2, 1, -2, 2, -1, 2, 0, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 95; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + Boole[PrimePowerQ[k]] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    Table[DivisorSum[n, (-1)^(n/# + 1) &, PrimePowerQ[#] &], {n, 95}]
  • PARI
    A317531(n) = sumdiv(n,d,((-1)^(n/d+1))*(1==omega(d))); \\ Antti Karttunen, Sep 30 2018

Formula

G.f.: Sum_{k>=1} x^A246655(k)/(1 + x^A246655(k)).
L.g.f.: log(Product_{p prime, k>=1} (1 + x^(p^k))^(1/p^k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A069513(d).
If n is odd, a(n) = A001222(n).
Showing 1-10 of 14 results. Next