cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A338072 Concatenation of the digits of A083758.

Original entry on oeis.org

2, 3, 1, 1, 7, 4, 1, 3, 1, 1, 7, 1, 6, 3, 2, 3, 7, 9, 1, 9, 7, 2, 4, 1, 2, 9, 3, 7, 5, 9, 1, 9, 3, 2, 2, 7, 2, 2, 9, 2, 3, 9, 4, 3, 9, 9, 2, 9, 3, 3, 7, 2, 5, 7, 1, 4, 4, 7, 5, 0, 9, 1, 9, 2, 9, 3, 1, 7, 2, 3, 1, 6, 1, 9, 9, 3, 7, 1, 7, 9, 3, 6, 7, 2, 5, 1, 1, 0, 6, 3, 4, 2, 4, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2020

Keywords

Comments

This is the beginning of the decimal expansion of the very large primes defined in A083758 and A083759, read from left to right.

Examples

			The primes are:
2,
23,
2311,
23117,
2311741,
231174131,
23117413117,
23117413117163,
2311741311716323,
...
23117413117163237919724129
...
2311741311716323791972412937591932272292394399293372571447509192931723161993717936725110634241
...
		

Crossrefs

Cf. A033308 (the Copeland-Erdős constant), A083758, A083759, A338073.

A083759 Primes arising in A083758.

Original entry on oeis.org

2, 23, 2311, 23117, 2311741, 231174131, 23117413117, 23117413117163, 2311741311716323, 231174131171632379, 231174131171632379197, 231174131171632379197241, 23117413117163237919724129
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 06 2003

Keywords

Crossrefs

Extensions

More terms from Sean A. Irvine, Dec 15 2009

A338073 Rearrangement of positive integers except 3 defined by A083758.

Original entry on oeis.org

1, 2, 5, 4, 13, 11, 7, 38, 9, 22, 45, 53, 10, 12, 17, 44, 49, 50, 52, 85, 158, 68, 55, 229, 97, 8, 62, 269, 256, 159, 41, 73, 54, 179, 581, 210, 98, 297, 86, 34, 43, 273, 199, 122, 16, 153, 140, 29, 709, 521, 64, 163, 87, 389, 1145, 106, 164, 231, 26, 177, 28, 464, 51, 258, 398, 391
Offset: 1

Views

Author

N. J. A. Sloane, Oct 20 2020

Keywords

Comments

This is conjectured to be a permutation of all positive integers except 3.
Apply PrimePi (A000720) to the terms of A083758.

Crossrefs

Programs

  • PARI
    a338073(m)={my(np=1000*m,pused=vectorsmall(np),digp=[]);for(n=1,m,my(found=0);for(k=1,np, if(!pused[k],my(add=digits(prime(k)),pc=concat(digp,add));if(ispseudoprime(fromdigits(pc)),print1(k,", ");digp=pc;pused[k]=1;found=1;break)));if(!found,break))};
    a338073(66) \\ Hugo Pfoertner, Oct 21 2020

A051670 Smallest prime that concatenated with all previous terms of sequence forms a prime.

Original entry on oeis.org

2, 3, 3, 3, 3, 23, 7, 3, 53, 19, 149, 571, 3, 131, 3, 151, 389, 31, 389, 97, 59, 277, 491, 181, 59, 67, 647, 1117, 797, 433, 41, 367, 29, 487, 719, 283, 347, 97, 1103, 193, 821, 13, 29, 31, 947, 619, 167, 229, 479, 271, 1217, 79, 2777, 241, 1361, 751, 83, 4603, 317
Offset: 1

Views

Author

Felice Russo, Dec 15 1999

Keywords

Examples

			The 6th term of the sequence is 23 because that is smallest prime that when concatenated with previous terms 2, 3, 3, 3, 3, produces a prime (2333323).
		

References

  • A. Murthy, Smar. Notions J. Vol. 11, N. 1-2-3 Spring 2000

Crossrefs

Cf. A048549 and A083758.

Programs

  • Mathematica
    nxt[{lst_,n_}]:=Module[{id=IntegerDigits[lst],np=2},While[ !PrimeQ[ FromDigits[ Join[id, IntegerDigits[np]]]],np=NextPrime[np]];{FromDigits[ Join[id,IntegerDigits[np]]],np}]; Transpose[NestList[nxt,{2,2},60]] [[2]] (* Harvey P. Dale, May 25 2015 *)
    nxt[{l_,a_}]:=Module[{k=2},While[CompositeQ[l*10^IntegerLength[k]+ k],k= NextPrime[ k]];{l*10^IntegerLength[k]+k,k}]; NestList[nxt,{2,2},60][[All,2]] (* Harvey P. Dale, Aug 09 2020 *)

Extensions

Extended by T. D. Noe, May 01 2010

A049462 a(n) is the smallest n-digit prime p such that the concatenation a(1)a(2)...a(n-1)p is prime, with a(1) = 2.

Original entry on oeis.org

2, 11, 151, 1013, 10867, 100673, 1000357, 10000931, 100000213, 1000000901, 10000001797, 100000000283, 1000000001911, 10000000012553, 100000000006087, 1000000000011317, 10000000000003471, 100000000000017431
Offset: 1

Views

Author

Jeff Heleen, Oct 13 2003

Keywords

Comments

The corresponding primes are certified for 44 < n < 60 (for the first 15 titanic primes). - Metin Sariyar, Oct 23 2020

Examples

			Starting with an initial prime of 2, next the smallest 2-digit prime which gives a prime is 11 (211, a prime), then 151 (3-digit prime) is the smallest to make 211151 a prime, etc.
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ ! PrimeQ[k], k++ ]; k]; a[1] = 2; a[n_] := a[n] = Block[{p = Sum[ a[i]*10^(n(n + 1)/2 - i(i + 1)/2), {i, 1, n - 1}], q = NextPrim[10^(n - 1)]}, While[ !PrimeQ[p + q], q = NextPrim[q]]; q]; Table[ a[n], {n, 1, 19}] (* Robert G. Wilson v, Oct 18 2003 *)

Extensions

More terms from Robert G. Wilson v, Oct 18 2003
Showing 1-5 of 5 results.