cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A105817 Decimal expansion of the Fibonacci nested radical.

Original entry on oeis.org

1, 6, 6, 1, 9, 8, 2, 4, 6, 2, 3, 2, 7, 8, 1, 1, 5, 5, 7, 9, 6, 7, 6, 0, 6, 0, 8, 1, 8, 1, 5, 1, 3, 1, 2, 9, 5, 0, 5, 6, 1, 6, 7, 5, 6, 2, 4, 6, 5, 0, 3, 5, 0, 0, 8, 2, 9, 9, 0, 6, 8, 0, 6, 7, 4, 3, 0, 6, 2, 9, 7, 2, 3, 5, 9, 8, 9, 5, 7, 3, 8, 1, 0, 8, 1, 7, 1, 6, 7, 0, 4, 1, 1, 0, 8, 4, 9, 2, 6, 6, 6, 9, 2, 2, 5
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The continued fraction expression of this is A105818. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Fibonacci[ Range[50]]]], 10, 111][[1]] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + sqrt(1 + sqrt(2 + sqrt(3 + sqrt(5 + ... + sqrt(Fibonacci(n)=A000045)))).

A105815 Decimal expansion of the semiprime nested radical.

Original entry on oeis.org

2, 6, 6, 3, 5, 2, 5, 6, 3, 4, 8, 0, 6, 8, 5, 6, 5, 4, 4, 9, 8, 9, 4, 4, 6, 7, 3, 2, 7, 2, 1, 9, 5, 5, 1, 4, 5, 9, 9, 9, 2, 2, 9, 8, 2, 6, 8, 9, 2, 7, 2, 9, 3, 2, 9, 1, 4, 8, 3, 3, 7, 0, 5, 8, 6, 8, 0, 2, 3, 8, 8, 4, 8, 7, 9, 0, 3, 9, 3, 2, 9, 9, 3, 5, 6, 4, 3, 9, 6, 0, 5, 6, 8, 6, 4, 2, 4, 5, 5, 9, 9, 1, 4, 5, 3
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449]. The continued fraction representation of this constant is A105816.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.66352563480685654498944673272195514599922982689272932914833705868...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • Steven R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, 2003, p. 8.

Crossrefs

For other nested radicals, see A072449, A083869, A099874, A099876, A099877, A099878, A099879, A105546, A105548, A105816, A239349.
Cf. A001358.

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; RealDigits[ Fold[ Sqrt[ #1 + #2] &, 0, Reverse[ Select[ Range[260], fQ[ # ] &]]], 10, 111][[1]] (* Robert G. Wilson v, May 31 2005 *)

Formula

Limit_{n -> infinity} sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))), where semiprime(n) = A001358(n).

A105816 Continued fraction expansion of the semiprime nested radical (A105815).

Original entry on oeis.org

2, 1, 1, 1, 34, 1, 2, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 9, 7, 1, 9, 1, 5, 1, 5, 1, 2, 7, 2, 2, 3, 5, 2, 1, 10, 8, 2, 3, 1, 1, 1, 12, 1, 1, 5, 4, 4, 2, 1, 1, 2, 2, 4, 13, 2, 2, 12, 3, 11, 15, 2, 2, 2, 23, 8, 1, 1, 3, 1, 2, 8, 19, 1, 5, 2, 7, 4, 1, 82, 22, 1, 1, 1, 2, 1, 1, 9, 1, 1, 1, 15, 8, 12, 2, 11, 1, 15
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449].
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			2.66352563480685654498944673272195514599922982689272932914833705868...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 and 229.
  • S. R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

From Robert G. Wilson v: (Start)
Cf. A072449, Decimal expansion of limit of a nested radical, sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ...
Cf. A083869, a(1)=1 then a(n) is the least k>=1 such that the nested radical sqrt(a(1)^2+sqrt(a(2)^2+sqrt(a(3)^2+(....+sqrt(a(n)^2)))...) is an integer.
Cf. A099874, Decimal expansion of a nested radical: cubeRoot(1 + cubeRoot(2 + cubeRoot(3 + cubeRoot(4 + ...
Cf. A099876, Decimal expansion of a nested radical: sqrt(1! + sqrt(2! + sqrt(3! + ...
Cf. A099877, Decimal expansion of a nested radical: sqrt(1^2 + cubeRoot(2^3 + 4thRoot(3^4 + 5thRoot(4^5 + ...
Cf. A099878, Decimal expansion of a nested radical: sqrt(1 + cubeRoot(2 + 4thRoot(3 + 5thRoot(4 + ...
Cf. A099879, Decimal expansion of a nested radical: sqrt(1^2 + sqrt(2^2 + sqrt(3^2 + ...
(End)

Programs

  • Mathematica
    fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; t = Select[ Range[ 300], fQ[ # ] &]; f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + t[[k]]]; k-- ]; s]; ContinuedFraction[ f[90], 99] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

continued fraction representation of: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n)=A001358(n))))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A105818 Continued fraction expansion of the Fibonacci nested radical (A105817).

Original entry on oeis.org

1, 1, 1, 1, 23, 18, 1, 1, 1, 1, 1, 1, 2, 1, 22, 2, 1, 53, 1, 1, 10, 1, 1, 17, 2, 4, 1, 27, 1, 2, 422, 3, 3, 13, 12, 5, 28, 1, 3, 1, 2, 1, 3, 2, 4, 6, 6, 3, 5, 50, 1, 1, 6, 3, 2, 1, 118, 2, 1, 1, 2, 6, 1, 4, 1, 1, 5, 2, 3, 3, 16, 1, 4, 6, 2, 2, 22, 4, 3, 10, 1, 1, 49, 5, 1, 1, 12, 1, 1, 3, 13, 3, 10, 1, 2
Offset: 0

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

The decimal expansion of this is A105817. "It was discovered by T. Vijayaraghavan that the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane]. We know the asymptotic limit of Fibonacci numbers is Phi^n (Binet expansion) and that Phi^n < 2^n and hence that the Fibonacci Nested Radical converges.
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014

Examples

			1.66198246232781155796760608181513129505616756246503500829906806743...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 & 229.
  • S. R. Finch, "Analysis of a Radical Expansion." Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + Fibonacci[k]]; k-- ]; s]; ContinuedFraction[ f[46], 95] (* Robert G. Wilson v, Apr 21 2005 *)

Formula

Sqrt(1 + Sqrt(1 + Sqrt(2 + Sqrt(3 + Sqrt(5 + ... + Sqrt(Fibonacci(n) = A000045)))).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A166994 Triangle, read by rows, where T(n,k) = T(n,k-1)^2 - T(k-1,k-1)^2 for n>=k>1, with T(n,1) = n for n>=1.

Original entry on oeis.org

1, 2, 3, 3, 8, 55, 4, 15, 216, 43631, 5, 24, 567, 318464, 99515655135, 6, 35, 1216, 1475631, 2175583184000, 4723258824886629604131775, 7, 48, 2295, 5264000, 27707792335839, 767711852760361479511965696
Offset: 1

Views

Author

Paul D. Hanna, Nov 18 2009

Keywords

Examples

			Triangle begins:
1;
2, 3;
3, 8, 55;
4, 15, 216, 43631;
5, 24, 567, 318464, 99515655135;
6, 35, 1216, 1475631, 2175583184000, 4723258824886629604131775;
7, 48, 2295, 5264000, 27707792335839, 767711852760361479511965696, 589359179694820074404152604620573424809709490316113791; ...
ILLUSTRATE THE RECURRENCE.
For row 4, start with 4, then continue with the rule:
"obtain the next term in the row by squaring the current term and subtracting the square of the first term in the current column":
4^2 - 1^2 = 15; 15^2 - 3^2 = 216; 216^2 - 55^2 = 43631.
Likewise for row 5:
5^2 - 1^2 = 24; 24^2 - 3^2 = 567; 567^2 - 55^2 = 318464; 318464^2 - 43631^2 = 99515655135.
Continuing in this way generates all rows of this triangle.
ILLUSTRATE GENERATING METHOD USING NESTED RADICALS.
Let a(n) = A083869(n), then row n equals the resulting integers at each stage in the successive nested radicals:
sqrt(a(1)^2+sqrt(a(2)^2+sqrt(a(3)^2+(....+sqrt(a(n)^2)))...).
For example, the terms in row n=3 are:
3 = sqrt(1^2 + sqrt(3^2 + sqrt(55^2))),
8 = sqrt(3^2 + sqrt(55^2)),
55 = sqrt(55^2).
And the terms in row 4 are:
4 = sqrt(1^2 + sqrt(3^2 + sqrt(55^2 + sqrt(43631^2)))),
15 = sqrt(3^2 + sqrt(55^2 + sqrt(43631^2))),
216 = sqrt(55^2 + sqrt(43631^2)),
43631 = sqrt(43631^2).
		

Crossrefs

Cf. A083869.

Programs

  • Mathematica
    A[n_, 1] := n; A[n_, k_] := A[n, k - 1]^2 - A[n - 1, k - 1]^2; Flatten[Table[A[n, k], {n, 10}, {k, n}]] (* G. C. Greubel, May 30 2016 *)
  • PARI
    T(n,k)=if(k==1,n,T(n,k-1)^2-T(k-1,k-1)^2)

Formula

Main diagonal is A083869, which obeys an interesting recursion of nested radicals.
Showing 1-5 of 5 results.