A372869 Decimal expansion of the number whose continued fraction coefficients are given in A084580.
5, 8, 1, 5, 8, 0, 3, 3, 5, 8, 8, 2, 8, 3, 2, 9, 8, 5, 6, 1, 4, 5, 0, 0, 6, 0, 7, 2, 2, 8, 0, 6, 5, 5, 2, 4, 7, 7, 6, 3, 0, 5, 6, 6, 9, 6, 2, 0, 0, 9, 2, 3, 0, 1, 3, 6, 2, 1, 2, 1, 5, 5, 5, 1, 5, 7, 6, 7, 1, 0, 4, 9, 1, 2, 4, 1, 9, 5, 3, 4, 0, 8, 9, 4, 9, 2, 0, 1, 2, 6, 9, 4, 1, 4, 2, 1, 2, 9, 0, 9, 2, 8, 0, 5, 9, 2, 1, 2, 8, 8, 7, 8, 6, 1, 7, 6, 8, 0, 8, 0, 4, 1, 3, 2, 1, 3, 6, 3, 7, 5, 7, 8, 3, 2, 6
Offset: 0
Examples
0.5815803358828329856145006072280655247763056696200923013621215551576710...
Crossrefs
Cf. A084580 (continued fraction).
Programs
-
Python
# Using `sample_gauss_kuzmin_distribution` function from A084580. from mpmath import mp, iv def decimal_from_cf(coeffs): num = iv.mpf([coeffs[-1], coeffs[-1]+1]) for coeff in coeffs[-2::-1]: num = coeff + 1/iv.mpf(num) return 1/num def get_matching_digits(interval_a, interval_b): match_index = 0 for i, j in zip(interval_a, interval_b): if i != j: break match_index += 1 return interval_a[:match_index] def compute_kuzmin_digits(prec, num_coeffs): assert prec > num_coeffs mp.dps = iv.dps = prec coeffs = sample_gauss_kuzmin_distribution(num_coeffs) x = decimal_from_cf(coeffs) a = mp.nstr(mp.mpf(x.a), n=prec, strip_zeros=False) b = mp.nstr(mp.mpf(x.b), n=prec, strip_zeros=False) return get_matching_digits(a, b) num = compute_kuzmin_digits(prec=200, num_coeffs=180) A372869 = [int(d) for d in num[1:] if d != '.']
Comments