A085046 a(n) = n^2 - (1 + (-1)^n)/2.
1, 3, 9, 15, 25, 35, 49, 63, 81, 99, 121, 143, 169, 195, 225, 255, 289, 323, 361, 399, 441, 483, 529, 575, 625, 675, 729, 783, 841, 899, 961, 1023, 1089, 1155, 1225, 1295, 1369, 1443, 1521, 1599, 1681, 1763, 1849, 1935, 2025, 2115, 2209, 2303, 2401, 2499, 2601
Offset: 1
Examples
4*a(n) is the number of unit edges in the pattern below (see comments). _ _|_|_ _ _ _ _|_|_|_|_ _|_|_ _|_|_|_ _|_|_|_|_|_|_ _ _ _|_|_|_|_ _|_|_|_|_|_ _|_|_|_|_|_|_|_|_ _ |_|_| |_|_|_|_|_| |_|_|_|_|_|_| |_|_|_|_|_|_|_|_|_| |_| |_|_| |_|_|_| |_|_|_|_|_|_| |_|_|_|_|_|_|_| |_| |_|_|_|_| |_|_|_|_|_| |_|_| |_|_|_| |_| n=1 n=2 n=3 n=4 n=5 - _Wesley Ivan Hurt_, Mar 09 2015
Links
- Stefano Spezia, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[n^2-(1+(-1)^n)/2 : n in [1..100]]; // Wesley Ivan Hurt, Mar 09 2015
-
Maple
A085046:=n->n^2-(1+(-1)^n)/2: seq(A085046(n), n=1..100); # Wesley Ivan Hurt, Mar 09 2015
-
Mathematica
Table[n^2-1/2 (1+(-1)^n), {n, 60}] (* Bruno Berselli, Sep 17 2013 *) LinearRecurrence[{2,0,-2,1},{1,3,9,15},70] (* Harvey P. Dale, Oct 25 2015 *)
Formula
a(1) = 1, a(2) = 3, then a(2n) = (a(2n-1)*a(2n+1))^1/2 and a(2n+1) = {a(2n) + a(2n+2)}/2. Even-indexed terms are the geometric mean, and odd-indexed terms are the arithmetic mean, of their neighbors.
a(2n+1) = (2n+1)^2 and a(2n) = 4n^2 - 1.
a(n) = A008811(2n) - 1. - N. J. A. Sloane, Jun 12 2004
From Bruno Berselli, Sep 17 2013: (Start)
G.f.: x*(1 + x + 3*x^2 - x^3)/((1+x)*(1-x)^3).
a(n) = n^2 - (1 + (-1)^n)/2. (End)
a(1)=1, a(2)=3, a(3)=9, a(4)=15, a(n) = 2*a(n-1) + 0*a(n-2) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Oct 25 2015
E.g.f.: 1 - cosh(x) + x*(1 + x)*(cosh(x) + sinh(x)). - Stefano Spezia, May 26 2021
Sum_{n>=1} 1/a(n) = Pi^2/8 + 1/2. - Amiram Eldar, Aug 25 2022
Extensions
More terms from Benoit Cloitre, Aug 06 2003
Formula added in the first comment by Bruno Berselli, Sep 17 2013
Replaced name with Sep 17 2013 formula from Bruno Berselli [Wesley Ivan Hurt, May 17 2020]
Comments