A085465 Number of monotone n-weightings of complete bipartite digraph K(3,3).
1, 15, 102, 442, 1443, 3885, 9100, 19188, 37269, 67771, 116754, 192270, 304759, 467481, 696984, 1013608, 1442025, 2011815, 2758078, 3722082, 4951947, 6503365, 8440356, 10836060, 13773565, 17346771, 21661290, 26835382, 33000927, 40304433
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Goran Kilibarda and Vladeta Jovovic, Antichains of Multisets, J. Integer Seqs., Vol. 7, 2004.
- H. Mühle, Counting Proper Mergings of Chains and Antichains, arXiv:1206.3922 [math.CO], 2012.
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[1/20*n*(n+1)*(n^2+1)*(n^2+2*n+2): n in [1..40]]; // Vincenzo Librandi, Oct 06 2017
-
Mathematica
Rest[CoefficientList[Series[x*(1 + 4*x + x^2)^2/(1 - x)^7, {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 15, 102, 442, 1443, 3885, 9100}, 40] (* Vincenzo Librandi, Oct 06 2017 *)
-
PARI
x='x+O('x^50); Vec(x*(1+4*x+x^2)^2/(1-x)^7) \\ G. C. Greubel, Oct 06 2017
Formula
a(n) = n + 13*binomial(n, 2) + 60*binomial(n, 3) + 120*binomial(n, 4) + 108*binomial(n, 5) + 36*binomial(n, 6) = 1/20*n*(n+1)*(n^2+1)*(n^2+2*n+2) = Sum_{i=1..n} ((n+1-i)^3-(n-i)^3)*i^3. More generally, number of monotone n-weightings of complete bipartite digraph K(s, t) is Sum_{i=1..n} ((n+1-i)^s-(n-i)^s)*i^t = Sum_{i=1..n} ((n+1-i)^t-(n-i)^t)*i^s.
G.f.: x*(1+4*x+x^2)^2/(1-x)^7. - Colin Barker, Apr 01 2012
Comments