cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085697 a(n) = T(n)^2, where T(n) = A000073(n) is the n-th tribonacci number.

Original entry on oeis.org

0, 0, 1, 1, 4, 16, 49, 169, 576, 1936, 6561, 22201, 75076, 254016, 859329, 2907025, 9834496, 33269824, 112550881, 380757169, 1288092100, 4357584144, 14741602225, 49870482489, 168710633536, 570743986576, 1930813074369, 6531893843049
Offset: 0

Views

Author

Emanuele Munarini, Jul 18 2003

Keywords

Comments

In general, squaring the terms of a third-order linear recurrence with signature (x,y,z) will result in a sixth-order recurrence with signature (x^2 + y, x^2*y + z*x + y^2, x^3*z + 4*x*y*z - y^3 + 2*z^2, x^2*z^2 - x*y^2*z - z^2*y, z^2*y^2 - z^3*x, -z^4). - Gary Detlefs, Jan 10 2023

References

  • R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)) )); // G. C. Greubel, Nov 20 2021
    
  • Mathematica
    LinearRecurrence[{2,3,6,-1,0,-1},{0,0,1,1,4,16},30] (* Harvey P. Dale, Oct 26 2020 *)
  • Maxima
    t[0]:0$  t[1]:0$  t[2]:1$
    t[n]:=t[n-1]+t[n-2]+t[n-3]$
    makelist(t[n]^2,n,0,40); /* Emanuele Munarini, Mar 01 2011 */
    
  • Sage
    @CachedFunction
    def T(n): # A000073
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def A085697(n): return T(n)^2
    [A085697(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021

Formula

G.f.: x^2*( 1-x-x^2-x^3 )/( (1-3*x-x^2-x^3)*(1+x+x^2-x^3) ).
a(n+6) = 2*a(n+5) + 3*a(n+4) + 6*a(n+3) - a(n+2) - a(n).
a(n) = (-A057597(n-2) + 3*A057597(n-1) + 6*A057597(n) + 5*A113300(n-1) - A099463(n-2))/11. - R. J. Mathar, Aug 19 2008

Extensions

Offset corrected to match A000073 by N. J. A. Sloane, Sep 12 2020
Name corrected to match corrected offset by Michael A. Allen, Jun 10 2021