A085697 a(n) = T(n)^2, where T(n) = A000073(n) is the n-th tribonacci number.
0, 0, 1, 1, 4, 16, 49, 169, 576, 1936, 6561, 22201, 75076, 254016, 859329, 2907025, 9834496, 33269824, 112550881, 380757169, 1288092100, 4357584144, 14741602225, 49870482489, 168710633536, 570743986576, 1930813074369, 6531893843049
Offset: 0
References
- R. Schumacher, Explicit formulas for sums involving the squares of the first n Tribonacci numbers, Fib. Q., 58:3 (2020), 194-202.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,3,6,-1,0,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients(R!( x^2*(1-x-x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)) )); // G. C. Greubel, Nov 20 2021 -
Mathematica
LinearRecurrence[{2,3,6,-1,0,-1},{0,0,1,1,4,16},30] (* Harvey P. Dale, Oct 26 2020 *)
-
Maxima
t[0]:0$ t[1]:0$ t[2]:1$ t[n]:=t[n-1]+t[n-2]+t[n-3]$ makelist(t[n]^2,n,0,40); /* Emanuele Munarini, Mar 01 2011 */
-
Sage
@CachedFunction def T(n): # A000073 if (n<2): return 0 elif (n==2): return 1 else: return T(n-1) +T(n-2) +T(n-3) def A085697(n): return T(n)^2 [A085697(n) for n in (0..40)] # G. C. Greubel, Nov 20 2021
Formula
Extensions
Offset corrected to match A000073 by N. J. A. Sloane, Sep 12 2020
Name corrected to match corrected offset by Michael A. Allen, Jun 10 2021
Comments