cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A085903 Expansion of (1 + 2*x^2)/((1 + x)*(1 - 2*x)*(1 - 2*x^2)).

Original entry on oeis.org

1, 1, 7, 9, 31, 49, 127, 225, 511, 961, 2047, 3969, 8191, 16129, 32767, 65025, 131071, 261121, 524287, 1046529, 2097151, 4190209, 8388607, 16769025, 33554431, 67092481, 134217727, 268402689, 536870911, 1073676289, 2147483647
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 16 2003

Keywords

Comments

Resultant of the polynomial x^n - 1 and the Chebyshev polynomial of the first kind T_2(x).
This sequence is the case P1 = 1, P2 = 0, Q = -2 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014

Crossrefs

Programs

  • Magma
    [Round((Sqrt(2)^n - 1)*(Sqrt(2)^n - (-1)^n)): n in [1..40]]; // Vincenzo Librandi, Apr 28 2014
    
  • Maple
    seq(simplify((sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n)), n = 1..30); # Peter Bala, Apr 27 2014
  • Mathematica
    CoefficientList[ Series[(1 + 2x^2)/(1 - x - 4x^2 + 2x^3 + 4x^4), {x, 0, 30}], x] (* Robert G. Wilson v, May 04 2013 *)
    LinearRecurrence[{1,4,-2,-4},{1,1,7,9},40] (* Harvey P. Dale, Jul 25 2016 *)
  • PARI
    a(n) = polresultant(x^n - 1, 2*x^2 - 1) \\ David Wasserman, Feb 10 2005
    
  • Python
    def A085903(n): return (1<>1))-1)**2 # Chai Wah Wu, Jun 19 2024

Formula

a(2*n) = 2*4^n - 1, a(2*n + 1) = (2^n - 1)^2; interlaces A083420 with A060867 (squares of Mersenne numbers A000225). - Creighton Dement, May 19 2005
A107663(2*n) = a(2*n) = A083420(n). - Creighton Dement, May 19 2005
From Peter Bala, Apr 27 2014: (Start)
a(n) = (sqrt(2)^n - 1)*(sqrt(2)^n - (-1)^n).
a(n) = Product_{k = 1..n} ( 2 - exp(4*k*Pi*i/n) ). (End)
E.g.f.: exp(-x) + exp(2*x) - 2*cosh(sqrt(2)*x). - Ilya Gutkovskiy, Jun 16 2016

Extensions

More terms from David Wasserman, Feb 10 2005
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 15 2007