A085939 Horadam sequence (0,1,6,4).
0, 1, 4, 22, 112, 580, 2992, 15448, 79744, 411664, 2125120, 10970464, 56632576, 292353088, 1509207808, 7790949760, 40219045888, 207621882112, 1071801803776, 5532938507776, 28562564853760
Offset: 0
Examples
a(4) = 112 because a(3) = 22, a(2) = 4, s = 4, r = 6 and (4 * 22) + (6 * 4) = 112.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein, Lucas Number
- Eric Weisstein, Lucas Sequence
- Eric Weisstein, Horadam Sequence
- Eric Weisstein, Fibonacci Number
- Eric Weisstein, Pell Number
- Index entries for linear recurrences with constant coefficients, signature (4, 6).
Programs
-
Magma
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Mathematica
Join[{a=0,b=1},Table[c=4*b+6*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *) LinearRecurrence[{4,6},{0,1},30] (* Harvey P. Dale, Jul 20 2016 *)
-
PARI
x='x+O('x^30); concat([0], Vec(x/(1-4*x-6*x^2))) \\ G. C. Greubel, Jan 16 2018
-
Sage
[lucas_number1(n,4,-6) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
Formula
a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 6.
a(n) = ((2+sqrt(10))^n - (2-sqrt(10))^n)/(2*sqrt(10)). - Rolf Pleisch, Jul 06 2009
G.f.: x/(1-4*x-6*x^2). - Colin Barker, Jan 10 2012
Comments