cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A214735 Primes such that no pairwise sum is a square.

Original entry on oeis.org

2, 3, 5, 17, 29, 37, 41, 43, 53, 67, 73, 89, 109, 113, 131, 137, 149, 151, 157, 163, 181, 197, 199, 229, 233, 241, 277, 293, 313, 317, 331, 337, 349, 367, 373, 389, 401, 409, 421, 433, 449, 457, 461, 521, 541, 557, 577, 593, 601, 613, 617, 619, 631, 641, 643
Offset: 1

Views

Author

Zak Seidov, Jul 27 2012

Keywords

Comments

a(n+1) is the smallest prime p > a(n) such that none of sums a(i)+p, i=1..n is a square.
The sequence is infinite.

Examples

			a(3) = 5 because 2 + 5 = 7 (not a square) and 3 + 5 = 8 (a cube, not a square).
7 is not in the sequence because 2 + 7 = 3^2. With 11, we have 11 + 5 = 4^2, and for 13, there is 3 + 13 = 4^2.
a(4) = 17, as 2 + 17 = 19 (a prime), 3 + 17 = 20 (divisible by a square but not itself a square) and 5 + 17 = 22 (a squarefree semiprime).
		

Crossrefs

Programs

  • Mathematica
    t = {2}; currPrime = 2; len = 1; maxLen = 100; Do[Label[ne]; currPrime = NextPrime[currPrime]; Do[If[IntegerQ[Sqrt[t[[i]] + currPrime]], Goto[ne]], {i, len}]; AppendTo[t, currPrime]; len++, {maxLen - 1}]; t
  • PARI
    list(lim)=my(v=List([2])); forprime(p=3,lim, if(issquare(p+2), next); for(k=sqrtint(p+2)+1,sqrtint(2*p-2), if(setsearch(v,k^2-p), next(2))); listput(v, p)); Vec(v) \\ Charles R Greathouse IV, Feb 14 2017

A173826 Primes p such that p-+floor(Sqrt(p)) are primes.

Original entry on oeis.org

5, 37, 47, 151, 331, 349, 593, 617, 907, 911, 937, 941, 1789, 1831, 2341, 2389, 2399, 2957, 3617, 3631, 3673, 3719, 4457, 5261, 5309, 6121, 6151, 6199, 6221, 7103, 7127, 7213, 8101, 8179, 9323, 9337, 9377, 10529, 10589, 11789, 13007, 13033, 13037
Offset: 1

Views

Author

Keywords

Comments

5-+2->primes, 37-+6->primes,..

Crossrefs

Programs

  • Mathematica
    f1[n_]:=n-Floor[Sqrt[n]];f2[n_]:=n+Floor[Sqrt[n]];lst={};Do[p=Prime[n];If[PrimeQ[f1[p]]&&PrimeQ[f2[p]],AppendTo[lst,p]],{n,8!}];lst

A173827 Primes p such that p+(floor(Sqrt(p)))^2 is prime.

Original entry on oeis.org

2, 7, 37, 43, 47, 67, 73, 149, 163, 167, 223, 337, 349, 353, 359, 409, 421, 439, 487, 499, 577, 587, 617, 691, 787, 823, 829, 911, 947, 1039, 1063, 1087, 1201, 1297, 1321, 1361, 1367, 1453, 1459, 1483, 1609, 1621, 1657, 1777, 1783, 1987, 1993, 2011, 2137, 2143
Offset: 1

Views

Author

Keywords

Comments

2+1=3 prime, 7+4=11 prime, 37+36=73 prime,...

Crossrefs

Programs

  • Mathematica
    f[n_]:=n+(Floor[Sqrt[n]])^2;lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,p]],{n,7!}];lst
    Select[Prime[Range[400]],PrimeQ[#+Floor[Sqrt[#]]^2]&] (* Harvey P. Dale, Apr 24 2013 *)

A173828 Primes p such that p-+(floor(Sqrt(p)))^2 are primes.

Original entry on oeis.org

7, 43, 47, 67, 149, 163, 167, 337, 353, 487, 587, 617, 787, 911, 947, 1367, 1777, 1783, 2333, 2347, 2503, 2927, 2953, 2963, 3023, 3607, 3613, 3637, 3643, 3697, 3709, 3847, 4363, 4397, 4423, 4463, 4483, 4903, 5273, 6113, 6143, 6197, 7103, 7187, 7193, 8117
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f1[n_]:=n-(Floor[Sqrt[n]])^2;f2[n_]:=n+(Floor[Sqrt[n]])^2;lst={};Do[p=Prime[n];If[PrimeQ[f1[p]]&&PrimeQ[f2[p]],AppendTo[lst,p]],{n,8!}];lst
    fQ[n_]:=Module[{c=Floor[Sqrt[n]]^2},AllTrue[n+{c,-c},PrimeQ]]; Select[ Prime[ Range[1200]],fQ] (* Harvey P. Dale, Dec 15 2021 *)

A173830 Primes of the form p - floor(sqrt(p)), p prime.

Original entry on oeis.org

2, 3, 5, 13, 19, 31, 37, 41, 59, 71, 97, 103, 137, 139, 151, 197, 241, 313, 331, 389, 401, 419, 487, 499, 563, 569, 577, 593, 683, 701, 769, 811, 877, 881, 907, 911, 1019, 1031, 1129, 1153, 1283, 1291, 1409, 1433, 1451, 1567, 1579, 1597, 1627, 1741, 1747, 1759
Offset: 1

Views

Author

Keywords

Comments

Primes k such that k + floor(sqrt(k + floor(sqrt(k)))) is prime (see A000037). - Ivan N. Ianakiev, Jun 23 2022

Crossrefs

Programs

  • Mathematica
    f[n_]:=n-Floor[Sqrt[n]];lst={};Do[p=Prime[n];If[PrimeQ[f[p]],AppendTo[lst,f[p]]],{n,7!}];lst
  • PARI
    forprime(p=2,1e4,if(isprime(t=p-sqrtint(p)),print1(t", "))) \\ Charles R Greathouse IV, Apr 15 2012
Showing 1-5 of 5 results.