cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2015

Keywords

Comments

These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
       1;
       1,       1;
       2,       1,       1;
       5,       3,       2,       1;
      13,      11,       7,       2,       1;
      44,      56,      39,      13,       3,     1;
     191,     385,     332,     111,      21,     3,    1;
    1229,    3994,    4735,    2004,     345,    34,    4,  1;
   13588,   67014,  113176,   66410,   13429,   992,   54,  4, 1;
  288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
  12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
  ...
		

Crossrefs

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.
Row sums are A000088.
Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095.
The labeled version is A327334.

A052445 Number of simple unlabeled n-node graphs of connectivity 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 21, 345, 13429, 1109105, 162318088, 39460518399
Offset: 1

Views

Author

Keywords

Examples

			The a(6) = 3 exactly-4-connected 6-node graphs are the complete graph K_6 with 1, 2, or 3 non-adjacent edges removed.
		

Crossrefs

Formula

a(n) = A086216(n) - A086217(n). - Andrey Zabolotskiy, Nov 20 2017

Extensions

Partially edited by N. J. A. Sloane, Jul 08 2015 at the suggestion of Brendan McKay
a(8)-a(11) copied from A259862 by Andrey Zabolotskiy, Nov 20 2017
a(4)-a(5) corrected by Andrew Howroyd, Aug 28 2019
a(12) from Sean A. Irvine, Dec 12 2021

A052444 Number of simple unlabeled n-node graphs of connectivity 3.

Original entry on oeis.org

0, 0, 0, 1, 2, 13, 111, 2004, 66410, 3902344, 388624106, 65142804740
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A006290(n) - A086216(n). - Andrew Howroyd, Sep 04 2019

Extensions

Name edited and a(8)-a(11) by Jens M. Schmidt, Feb 18 2019
a(3)-a(4) corrected by Andrew Howroyd, Aug 28 2019
a(12) from Sean A. Irvine, Nov 28 2021

A086217 Number of 5-connected graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 39, 1051, 102630, 22331311, 8491843895
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Crossrefs

Formula

a(n) = A324240(n) + A324234(n). - Andrew Howroyd, Sep 04 2019
a(n) = A086216(n) - A052445(n). - Jean-François Alcover, Sep 13 2019, after Andrew Howroyd in A086216

Extensions

Offset corrected by Travis Hoppe, Apr 11 2014
a(10) from the Encyclopedia of Finite Graphs (Travis Hoppe and Anna Petrone), Apr 11 2014
a(11) by Jens M. Schmidt, Feb 20 2019
a(12) added by Georg Grasegger, Jan 07 2025

A324092 Number of 7-connected simple non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 5, 87, 9940, 7532629, 12213260468
Offset: 1

Views

Author

Jens M. Schmidt, Feb 15 2019

Keywords

Crossrefs

Formula

a(n) = A324093(n) + A324088(n). - Andrew Howroyd, Sep 04 2019

Extensions

a(13) added by Georg Grasegger, Jan 07 2025

A324093 Number of 8-connected simple non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 127, 33146, 75146405, 346026751657
Offset: 1

Views

Author

Jens M. Schmidt, Feb 15 2019

Keywords

Crossrefs

Formula

a(n) = A324094(n) + A324089(n). - Andrew Howroyd, Sep 04 2019

Extensions

a(13)-a(14) added by Georg Grasegger, Jan 07 2025

A324094 Number of 9-connected simple non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 186, 114042, 814684114
Offset: 1

Views

Author

Jens M. Schmidt, Feb 15 2019

Keywords

Crossrefs

Formula

a(n) = A324095(n) + A324090(n). - Andrew Howroyd, Sep 04 2019

Extensions

a(14) added by Georg Grasegger, Jan 07 2025

A324095 Number of 10-connected simple non-isomorphic n-vertex graphs.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 264, 414048, 9508367572
Offset: 1

Views

Author

Jens M. Schmidt, Feb 15 2019

Keywords

Crossrefs

Extensions

a(15) added by Georg Grasegger, Jan 07 2025

A361578 Number of 5-connected polyhedra (or 5-connected simple planar graphs) with n nodes.

Original entry on oeis.org

1, 0, 1, 1, 5, 8, 30, 85, 382, 1550, 7352
Offset: 12

Views

Author

Manfred Scheucher, Mar 16 2023

Keywords

Comments

The icosahedral graph is the smallest 5-connected planar graph.

References

  • M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.

Crossrefs

Cf. A049373 (planar graphs with minimum degree~5) and A111358 (5-connected planar trianguations)
Showing 1-9 of 9 results.