A087475 a(n) = n^2 + 4.
4, 5, 8, 13, 20, 29, 40, 53, 68, 85, 104, 125, 148, 173, 200, 229, 260, 293, 328, 365, 404, 445, 488, 533, 580, 629, 680, 733, 788, 845, 904, 965, 1028, 1093, 1160, 1229, 1300, 1373, 1448, 1525, 1604, 1685, 1768, 1853, 1940, 2029, 2120, 2213, 2308, 2405, 2504
Offset: 0
Examples
a(2) = 8, discriminant of algebraic representation of barover(2) = [2,2,2,...] = sqrt 2 - 1 = 0.41421356... = ((sqrt 8) - 2)/2. a(3) = 13, discriminant of barover(3) = [3,3,3,...] = 0.3027756... = ((sqrt 13) - 3)/2.
References
- Manfred R. Schroeder, "Fractals, Chaos, Power Laws"; W.H. Freeman & Co, 1991, p. 330-331.
- Manfred R. Schroeder, "Number Theory in Science and Communication", Springer Verlag, 5th ed., 2009. [From Gary W. Adamson, Feb 23 2009]
- Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, New York, 2001. [From Wolfdieter Lang, Oct 21 2010]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Near-Square Prime.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Mathematica
Range[0, 50]^2 + 4 (* Harvey P. Dale, Jan 05 2011 *)
-
PARI
a(n)=n^2+4 \\ Charles R Greathouse IV, Jun 10 2011
-
Scala
(0 to 49).map(n => n * n + 4) // Alonso del Arte, May 29 2019
Formula
n^2 + 4 are discriminant terms in the formula for Positive Silver Mean Constants, defined as barover(n), = (sqrt (n^2 + 4) - n)/2. Such constants barover(n) = C have the property: 1/C - C = n.
a(n) = a(n-1) + 2*n-1 (with a(0)=4). - Vincenzo Librandi, Nov 22 2010
G.f.: (4 - 7*x + 5*x^2)/(1 - x)^3. - Colin Barker, Jan 06 2012
From Amiram Eldar, Jul 13 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 2*Pi*coth(2*Pi))/8.
Sum_{n>=0} (-1)^n/a(n) = (1 + 2*Pi*cosech(2*Pi))/8 = A371803. (End)
E.g.f.: exp(x)*(4 + x + x^2). - Stefano Spezia, Jul 08 2023
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(3)*sinh(sqrt(3)*Pi)/(2*sinh(2*Pi)).
Product_{n>=0} (1 + 1/a(n)) = sqrt(5)*sinh(sqrt(5)*Pi)/(2*sinh(2*Pi)). (End)
Comments